Jae Seong Choi;Ji Yung Kim;Moonju Kim;Kyung Il Sung;Byong Wan Kim
한국초지조사료학회지
/
제43권3호
/
pp.190-198
/
2023
This study was conducted to calculate the damage of Italian ryegrass (IRG) by abnormal climate using machine learning and present the damage through the map. The IRG data collected 1,384. The climate data was collected from the Korea Meteorological Administration Meteorological data open portal.The machine learning model called xDeepFM was used to detect IRG damage. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The calculation of damage was the difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of IRG data (1986~2020). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization (WMO) standard. The DMYnormal was ranged from 5,678 to 15,188 kg/ha. The damage of IRG differed according to region and level of abnormal climate with abnormal temperature, precipitation, and wind speed from -1,380 to 1,176, -3 to 2,465, and -830 to 962 kg/ha, respectively. The maximum damage was 1,176 kg/ha when the abnormal temperature was -2 level (+1.04℃), 2,465 kg/ha when the abnormal precipitation was all level and 962 kg/ha when the abnormal wind speed was -2 level (+1.60 ㎧). The damage calculated through the WMO method was presented as an map using QGIS. There was some blank area because there was no climate data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).
고해상도 전자기후도 기반의 농가맞춤 조기경보서비스를 구현하기 위해서는 실측기상자료가 없는 곳의 평년기후를 복원해야 한다. 일별 기상자료 복원에 드는 시간과 노력을 절약하기 위해 간이산출방식이 널리 사용되어 왔는데, 본 연구에서는 이렇게 간소화된 방식을 통해 제작된 평년 기후값이 어느 정도의 오차를 수반하는지를 분석하기 위하여, 평년기간(1981-2010)에 대한 일별 기상 값을 모두 복원하고, 이를 '시간적', '공간적' 간소화를 진행한 평년기후값과의 비교를 통해 기상위험의 예측 결과의 차이에 대해 분석하였다. 이를 위해 여러 재해관련 지수 중에서 많은 종류의 기상자료를 필요로 하는 농업가뭄지수를 이용하였으며, 섬진강 유역 일대의 10개 시군을 선정하였다. '시간'규모를 간소화한 평년 값은 30개년(1981-2010)에 대해 일별로 평균한 값을 이용하여 고해상도 분포를 제작하였으며, '공간'규모를 간소화 평년 값은 실험지역에 대하여 집수역 단위로 제작한 평년 값을 이용하였다. 먼저 '잔여수분지수'의 경우 '시간'규모 간소화 평년 값의 경우 과대 추정되었으며, '공간'규모 간소화 평년 값의 경우 과소 추정되는 경향을 나타냈다. 또한 2017년 1월부터 7월까지의 가뭄지수를 제작한 결과, 평년 자료 별로 가뭄의 정도를 모의한 결과에 차이가 있었으며, 지역적인 편차 또한 확인 되었다. 본 연구를 통하여 '간소화'된 제작방식을 통한 평년 기후 값이, 이를 이용해 재해위험을 산출한 결과에 영향을 미칠 수 있음을 확인하였다.
평년의 기온분포도의 제작방법에 따라 이를 활용하여 산출되는 농업기후정보에 어느 정도의 오차를 유발하는지 평가하고자 하였다. 1983-2012 기간에 발생한 기온을 일별로 평균하여 배경기온(365일 ${\times}$ 1세트)을 준비하고, 여기에 소기후모형을 적용하여 평균된 일별 기온분포도('EST 평년' 기온)를 제작하였다. 또한 30년동안 발생한 매년, 매일의 배경기온(365일 ${\times}$ 30세트)으로부터 실황 추정용 소기후모형에 적용하여 30세트의 기온분포도를 제작한 후 일 단위로 다시 평균한 기온분포도('OBS 평년' 기온)를 참값으로 간주하여 비교하였다. 평년 기온분포도에 따라 '후지' 사과의 개화일과 종상일을 예측하고, 늦서리의 위험정도를 비교한 결과, 휴면에 진입하는 늦가을 이후부터 봄철까지의 기온을 온도시간단위로 환산하여 사용하는 개화일의 경우, 평균 2.9일의 오차를 보인 반면, 4월의 최저기온 분포를 2차방정식에 대입하여 산출한 종상일의 경우 평균 11.4일의 비교적 큰 오차가 발생하는 것으로 나타났다. 또한, 늦서리의 위험을 판정하는 방법은 개화일과 종상일의 편차를 이용하는데 EST 평년 기온을 근거로 판정할 경우, 하동군 악양면의 12.5% 면적에 해당하는 농가는 종상일이 개화일과 같거나 늦게 출현하여 위험지역으로 분류되었지만, OBS 평년 기온에 따르면 악양면의 모든 지역에서 종상일이 개화일보다 늦게 나타나는 곳은 없었다. 차후 컴퓨터 자원과 구동시간에 큰 제약이 없다면 실황 추정기술에 따라 평년기간 30세트의 일별자료를 복원하여 기존 EST 평년 자료를 대체하는 것이 필요하다고 판단된다.
In this study, the GPM (Global Precipitation Mission) IMERG (Integrated Multi-satellitE retrievals for GPM) rainfall data was verified and evaluated using ground AWS (Automated Weather Station) and radar in order to investigate the availability of GPM IMERG rainfall data. The SPI (Standardized Precipitation Index) was calculated based on the GPM IMERG data and also compared with the results obtained from the ground observation data for the Hoengseong Dam and Yongdam Dam areas. For the radar data, 1.5 km CAPPI rainfall data with a resolution of 10 km and 30 minutes was generated by applying the Z-R relationship ($Z=200R^{1.6}$) and used for accuracy verification. In order to calculate the SPI, PERSIANN_CDR and TRMM 3B42 were used for the period prior to the GPM IMERG data availability range. As a result of latency verification, it was confirmed that the performance is relatively higher than that of the early run mode in the late run mode. The GPM IMERG rainfall data has a high accuracy for 20 mm/h or more rainfall as a result of the comparison with the ground rainfall data. The analysis of the time scale of the SPI based on GPM IMERG and changes in normal annual precipitation adequately showed the effect of short term rainfall cases on local drought relief. In addition, the correlation coefficient and the determination coefficient were 0.83, 0.914, 0.689 and 0.835, respectively, between the SPI based GPM IMERG and the ground observation data. Therefore, it can be used as a predictive factor through the time series prediction model. We confirmed the hydrological utilization and the possibility of real time drought monitoring using SPI based on GPM IMERG rainfall, even though results presented in this study were limited to some rainfall cases.
본 연구에서는 RCP 8.5 기후변화 시나라오를 바탕으로 온량지수와 쾨펜의 기후구분을 통한 우리나라의 기후지대 변화를 살펴 보았다. 그 결과, 온량지수에 의한 기후지대를 구분하였을 경우 21세기 후반으로 갈수록 기온이 증가하여 전국적으로 난온대의 기후특성이 나타날 것으로 예상되었으며, 쾨펜의 기후지대 구분에서는 기온의 꾸준한 증가와 강수량의 연중 빈도 차이에 의해 Cfa와 Cwa의 기후특성이 주로 나타날 것으로 예상된다.
한국작물학회 2017년도 9th Asian Crop Science Association conference
/
pp.303-303
/
2017
Japanese agriculture has faced to several threats: aging and decrease of farmer population, global competition, and the risk of climate change as well as harsh and variable weather. On the other hands, the number of large scale farms is increasing, because farm lands have been being aggregated to fewer numbers of farms. Cost cutting, development of efficient ways to manage complicatedly scattered farm lands, maintaining yield and quality under variable weather conditions, are required to adapt to changing environments. Information and communications technology (ICT) would contribute to solve such problems and to create innovative technologies. Thus we have been developing an early warning and decision support system to reduce weather and climate risks for rice, wheat and soybean production in Japan. The concept and prototype of the system will be shown. The system consists of a weather data system (Agro-Meteorological Grid Square Data System, AMGSDS), decision support contents where information is automatically created by crop models and delivers information to users via internet. AMGSDS combines JMA's Automated Meteorological Data Acquisition System (AMeDAS) data, numerical weather forecast data and normal values, for all of Japan with about 1km Grid Square throughout years. Our climate-smart system provides information on the prediction of crop phenology, created with weather forecast data and crop phenology models, as an important function. The system also makes recommendations for crop management, such as nitrogen-topdressing, suitable harvest time, water control, pesticide spray. We are also developing methods to perform risk analysis on weather-related damage to crop production. For example, we have developed an algorism to determine the best transplanting date in rice under a given environment, using the results of multi-year simulation, in order to answer the question "when is the best transplanting date to minimize yield loss, to avoid low temperature damage and to avoid high temperature damage?".
Although many researches of simulation programs to predict climate under the current climate change have been performed but more detailed studies of weather date which might influence the load of buildings seem insufficient. In this study, in Incheon are analyzed IES (Integrated Environmental Solutions)6.0, Ecotect 2010, EnergyPlus v4.0's IWEC file and ISO-TRY, the Korean standard weather data provided by the Korean Solar Energy Society for direct normal radiation which is used in load calculation programs. The results show that the radiation of the programs is the same as that of direct normal radiation per month but has a mere difference, compared with the radiation per hour and IWEC has also 77.12% when compared with ISO-TRY, meaning that it could affect load values of buildings when applied to them. And in case of ISO-TRY, it could be judged that the application of test reference year applied by the data measured has higher reliability than IWEC file.
기후변화에 대한 명백한 증거가 전 세계적으로 관찰되고 있음에도 불구하고 현재 사용 중인 홍수 빈도분석 방법은 이러한 기후변화나 장기변동성을 고려할 요소를 갖추지 못하고 있다. 본 연구에서는 관측된 연최대 일강우량과 일유출량 시계열을 대상으로 추세분석을 실시하여 전 지구적으로 나타난 기온상승과 같은 증가추세가 존재하는지 linear regression과 Mann-Kendall 기법을 이용하여 살펴보았으며, 나아가 기후의 변동성으로 인해 발생할 수 있는 홍수량의 증가추세를 반영한 빈도분석 방안을 제시하였다. 5개 대상지점(서울, 인천, 울릉도, 전주, 강릉)의 연최대 일강우량 모두 시간에 따른 증가추세를 일관되게 보이고 있었으나, 통계적인 유의성이 검증되지는 않았다. 홍수량도 3개의 대상지점(안동댐, 소양강댐, 대청댐) 모두에서 시간에 따른 증가추세가 관찰되었으나, 안동댐의 상향추세만이 통계적인 유의성을 내포하였다. 선형추세를 가진 홍수량의 빈도분석 및 위험도를 추정할 수 있는 대수정규 추세모형(log-normal trend model)을 소개하고, 안동댐과 소양강댐의 홍수 빈도분석을 위해 적용하였다. 적용결과 대수정규 추세모형의 2005년 50년 빈도 홍수량은 안동댐과 소양강댐 모두 대수정규 모형보다 각각 41%와 21% 증가하였으며, 목표연도가 증가함에 따라 추정되는 홍수량 역시 함께 증가함을 확인하였다.
This study was conducted to provide the agricultural climatological basic data for the reset of sowing period of the winter crop on the double cropping system with rice. During the past 30 years from 1981 to 2010, mean air temperature has risen by $0.45^{\circ}C$ per 10 years (with statistical significance), while precipitation has decreased by 6.74 mm per 10 years and the numbers of days for precipitation has reduced by 0.23 days per 10 years (with no statistical significance) in the sowing period ($1^{st}$ Oct. to $5^{th}$ Nov.) of winter crop. It was analyzed that double cropping system of rice and winter crops need to be reset in the way of delaying the sowing time of winter crops, because rising trend of temperature was clear while variability of precipitation was great and the trend was not clear in the sowing period of winter crops. We have also analyzed the meteorological features of the sowing period of winter crops in 2014, and found that mean air temperature in 2014 was higher than that in normal years (similar to recent temperature change feature) while precipitation in 2014 was much more frequent than that in normal years (unlike recent precipitation features). Such tendency in 2014 made the sowing of winter crops difficult because mechanical sowing could not be worked in flooded paddy fields. Heavy rain in October 2014 was also analyzed as a rare phenomenon.
Calibrating a conceptual hydrologic model necessitates selection of a calibration period that produces the most reliable prediction. This often must be chosen randomly, however, since there is no objective guidance. Observation plays the most important role in the calibration or uncertainty evaluation of hydrologic models, in which the key factors are the length of the data and the hydro-climate conditions in which they were collected. In this study, we investigated the effect of the calibration period selected on the predictive performance and uncertainty of a model. After classifying the inflows of the Hapcheon Dam from 1991 to 2019 into four hydro-climate conditions (dry, wet, normal, and mixed), a conceptual hydrologic partitioning model was calibrated using data from the same hydro-climate condition. Then, predictive performance and post-parameter statistics were analyzed during the verification period under various hydro-climate conditions. The results of the study were as follows: 1) Hydro-climate conditions during the calibration period have a significant effect on model performance and uncertainty, 2) calibration of a hydrologic model using data in dry hydro-climate conditions is most advantageous in securing model performance for arbitrary hydro-climate conditions, and 3) the dry calibration can lead to more reliable model results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.