• Title/Summary/Keyword: Climate index

Search Result 920, Processing Time 0.027 seconds

Rainfall Variations of Temporal Characteristics of Korea Using Rainfall Indicators (강수지표를 이용한 우리나라 강수량의 시간적인 특성 변화)

  • Hong, Seong-Hyun;Kim, Young-Gyu;Lee, Won-Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study suggests the results of temporal and spatial variations for rainfall data in the Korean Peninsula. We got the index of the rainfall amount, frequency and extreme indices from 65 weather stations. The results could be easily understood by drawing the graph, and the Mann-Kendall trend analysis was also used to determine the tendency (up & downward/no trend) of rainfall and temperature where the trend could not be clear. Moreover, by using the FARD, frequency probability rainfalls could be calculated for 100 and 200 years and then compared each other value through the moment method, maximum likelihood method and probability weighted moments. The Average Rainfall Index (ARI) which is meant comprehensive rainfalls risk for the flood could be obtained from calculating an arithmetic mean of the RI for Amount (RIA), RI for Extreme (RIE), and RI for Frequency (RIF) and as well as the characteristics of rainfalls have been mainly classified into Amount, Extremes, and Frequency. As a result, these each Average Rainfall Indices could be increased respectively into 22.3%, 26.2%, and 5.1% for a recent decade. Since this study showed the recent climate change trend in detail, it will be useful data for the research of climate change adaptation.

Agro-Climatic Indices Changes over the Korean Peninsula in CO2 Doubled Climate Induced by Atmosphere-Ocean-Land-Ice Coupled General Circulation Model (대기-해양-지면-해빙 접합 대순환 모형으로 모의된 이산화탄소 배증시 한반도 농업기후지수 변화 분석)

  • Ahn, Joong-Bae;Hong, Ja-Young;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 2010
  • According to IPCC 4th Assessment Report, concentration of carbon dioxide has been increasing by 30% since Industrial Revolution. Most of IPCC $CO_2$ emission scenarios estimate that the concentration will reach up to double of its present level within 100-year if the current tendency continues. The global warming has resulted in the agro-climate change over the Korean Peninsula as well. Accordingly, it is necessary to understand the future agro-climate induced by the increase of greenhouse gases in terms of the agro-climatic indices in the Korean peninsula. In this study, the future climate is simulated by an atmosphere/ocean/land surface/sea ice coupled general circulation climate model, Pusan National University Coupled General Circulation Model(hereafter, PNU CGCM), and by a regional weather prediction model, Weather Research and Forecasting Model(hereafter, WRF) for the purpose of a dynamical downscaling. The changes of the vegetable period and the crop growth period, defined as the total number of days of a year exceeding daily mean temperature of 5 and 10, respectively, have been analyzed. Our results estimate that the beginning date of vegetable and crop growth periods get earlier by 3.7 and 17 days, respectively, in spring under the $CO_2$-doubled climate. In most of the Korean peninsula, the predicted frost days in spring decrease by 10 days. Climatic production index (CPI), which closely represent the productivity of rice, tends to increase in the double $CO_2$ climate. Thus, it is suggested that the future $CO_2$ doubled climate might be favorable for crops due to the decrease of frost days in spring, and increased temperature and insolation during the heading date as we expect from the increased CPI.

Diurnal Change of Reflectance and Vegetation Index from UAV Image in Clear Day Condition (청천일 무인기 영상의 반사율 및 식생지수 일주기 변화)

  • Lee, Kyung-do;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Ahn, Ho-yong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.735-747
    • /
    • 2020
  • Recent advanced UAV (Unmanned Aerial Vehicle) technology supply new opportunities for estimating crop condition using high resolution imagery. We analyzed the diurnal change of reflectance and NDVI (Normalized Difference Vegetation Index) in UAV imagery for crop monitoring in clear day condition. Multi-spectral images were obtained from a 5-band multi-spectral camera mounted on rotary wing UAV. Reflectance were derived by the direct method using down-welling irradiance measurement. Reflectance using UAV imagery on calibration tarp, concrete and crop experimental sites did not show stable by time and daily reproducible values. But the CV (Coefficient of Variation) of diurnal NDVI on crop experimental sites was less than 5%. As a result of comparing NDVI at the similar time for two day, the daily mean average ratio of error showed a difference of 0.62 to 3.97%. Therefore, it is considered that NDVI using UAV imagery can be used for time series crop monitoring.

Characteristics of Longevity Factor with Time and Spatial Changes (시간$\cdot$공간적 변화에 따른 장수지수 결정 요인의 특성)

  • 김한중;정남수;김대식;윤성수;이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.116-126
    • /
    • 2003
  • In this study, we research about the relationships of human longevity and environments, inducted the significant factors of longevity from the statistical analysis, and represented spatial distribution of longevity using geographic information system. The factors confining human longevity can be categorized by geography/geology, climate/weather, economy, and social welfare. After analyzing statistical data, dependent variable which means the longevity index is defined by the ratio of population more than 85 years old among population more than 65 years old. The results of analysis show that longevity are related with waterworks ratio, temperature, local tax ratio, and latitude. In this study we discussed about the spatial characteristics which are represented by variance of the longevity index and described a spatial relationship between the longevity index and significant factors which are chosen by statistical analysis. In the further study, in order to sustain the longevity of a region, it is necessary for the effective rural planning to propagate a longevity of rural areas.

Annual Cycle and Interannual Variability of Tropical Cyclone Genesis Frequency in the CMIP5 Climate Models: Use of Genesis Potential Index (CMIP5 기후모델에서 나타나는 열대저기압 생성빈도의 연진동과 경년변동성: 잠재생성지수의 이용)

  • Kwon, MinHo
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.583-595
    • /
    • 2012
  • The potential for tropical cyclogenesis in a given oceanic and atmospheric environments can be represented by genesis potential index (GPI). Using the 18 Coupled Model Inter Comparison Project phase 5 (CMIP5) models, the annual cycle of GPI and interannual variability of GPI are analyzed in this study. In comparison, the annual cycle of GPI calculated from reanalysis data is revisited. In particular, GPI differences between CMIP5 models and reanalysis data are compared, and the possible reasons for the GPI differences are discussed. ENSO (El Nino and Southern Oscillation) has a tropical phenomenon, which affects tropical cyclone genesis and its passages. Some dynamical interpretations of tropical cyclogenesis are suggested by using the fact that GPI is a function of four large-scale parameters. The GPI anomalies in El Nino or La Nina years are discussed and the most contributable factors are identified in this study. In addition, possible dynamics of tropical cyclogenesis in the Northern Hemisphere Pacific region are discussed using the large-scale factors.

Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5) (기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가)

  • Lee, So-Jeong;Hyun, Yu-Kyung;Lee, Sang-Min;Hwang, Seung-On;Lee, Johan;Boo, Kyung-On
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

The Analysis on Export Competence of Ballast Water Management System in Korean Shipbuilding (우리나라 조선업의 선박평형수 처리장치 수출경쟁력 분석)

  • KIM, Sung-Kuk;HUR, Yun-Seok
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.72
    • /
    • pp.185-210
    • /
    • 2016
  • The climate change has become one of the most important global issues that require global responses. As one of the leading contributions to climate change, greenhouse gas emissions and Ballast Water Management have attracted growing attention from the international community. The International Maritime Organization (IMO) received its mandate to regulate International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004. The convention requires that every vessel must be equipped Ballast Water Management System (BWMS) in 2017. Based on this situation, this study aims to analyze the present state and data from the exports of BWMS(HS842121). The results show that as the most leading country in the field, Germany has the largest market share (14.33%), Revealed Comparative Advantage (RCA) index 1.76, and Trade Specialization Index (TSI) 0.636 in the world. The two other leading countries such as Denmark and Netherlands follows the ability of Germany. The Korean market share of HS842121 shows market share (5.98%) which is a bit bellow high compared to other countries. However the RCA index (1.85) presents the state of comparative advantage. In addition, Korea's TSI index (0.453) indicates that it is in the state of export specialization. The Korean BWMS and Shipbuilding industry maintain the state of export specialization. They are also in the state of import specialty. For Korea to raise its export competitiveness and to ensure shipbuilding competitiveness, it is necessary to intensify supporting systems and related policies.

  • PDF

Structure, Alpha and Beta Diversity of Natural Forest Areas in Eco-Zones of Taraba State, Nigeria

  • Dau Henry, Japheth;Bunde Bernard, Meer
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • To understand the health conditions and growth patterns of forest estate for environmental resilience and climate change mitigation, assessment of structure and species diversity is paramount. This study aimed at assessing the structure, alpha, and beta diversities of tree species in three ecological zones in Taraba, Nigeria for management purposes. In recent time, no research has been reported on the structure and beta diversity of the study areas. A systematic sampling design was used for data collection. Five sample plots of 50×50 m were laid in each of the six natural forest areas. The result showed a mean DBH (42.5 cm) and a tree height (15.0 m) from the forests. The forests have a structure of an inverse "J-shape," which is typical of natural forests in the tropics. The southern Guinea savanna zone had the highest mean Shannon-Weiner diversity index (2.8). The least beta diversity index (0.02) was between Baissa and Jen Gininya forest areas. Baissa and Bakin Dutse Protected Forest Areas (PFAs) contained 76.5% of the tree species. There is a high chance of all tree species to be found in these 2 forest areas. Proximity to a location influences how similar two tree species are, according to the least beta diversity index (0.02) recorded. The Federal Government's method of management for the forest, known as Gashaka Gumti National Park, may be responsible for the high beta diversity index in the Montane ecozone. Therefore, it should be strongly encouraged to practice strict oversight of natural areas, as their contributions to reducing climate change in Taraba State, Nigeria, cannot be overstated.

Development and Application of a Methodologyfor Climate Change Vulnerability Assessment-Sea Level Rise Impact ona Coastal City (기후변화 취약성 평가 방법론의 개발 및 적용 해수면 상승을 중심으로)

  • Yoo, Ga-Young;Park, Sung-Woo;Chung, Dong-Ki;Kang, Ho-Jeong;Hwang, Jin-Hwan
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.185-205
    • /
    • 2010
  • Climate change vulnerability assessment based on local conditions is a prerequisite for establishment of climate change adaptation policies. While some studies have developed a methodology for vulnerability assessment at the national level using statistical data, few attempts, whether domestic or overseas, have been made to develop methods for local vulnerability assessments that are easily applicable to a single city. Accordingly, the objective of this study was to develop a conceptual framework for climate change vulnerability, and then develop a general methodology for assessment at the regional level applied to a single coastal city, Mokpo, in Jeolla province, Korea. We followed the conceptual framework of climate change vulnerability proposed by the IPCC (1996) which consists of "climate exposure," "systemic sensitivity," and "systemic adaptive capacity." "Climate exposure" was designated as sea level rises of 1, 2, 3, 4, and 5 meter(s), allowing for a simple scenario for sea level rises. Should more complex forecasts of sea level rises be required later, the methodology developed herein can be easily scaled and transferred to other projects. Mokpo was chosen as a seaside city on the southwest coast of Korea, where all cities have experienced rising sea levels. Mokpo has experienced the largest sea level increases of all, and is a region where abnormal high tide events have become a significant threat; especially subsequent to the construction of an estuary dam and breakwaters. Sensitivity to sea level rises was measured by the percentage of flooded area for each administrative region within Mokpo evaluated via simulations using GIS techniques. Population density, particularly that of senior citizens, was also factored in. Adaptive capacity was considered from both the "hardware" and "software" aspects. "Hardware" adaptive capacity was incorporated by considering the presence (or lack thereof) of breakwaters and seawalls, as well as their height. "Software" adaptive capacity was measured using a survey method. The survey questionnaire included economic status, awareness of climate change impact and adaptation, governance, and policy, and was distributed to 75 governmental officials working for Mokpo. Vulnerability to sea level rises was assessed by subtracting adaptive capacity from the sensitivity index. Application of the methodology to Mokpo indicated vulnerability was high for seven out of 20 administrative districts. The results of our methodology provides significant policy implications for the development of climate change adaptation policy as follows: 1) regions with high priority for climate change adaptation measures can be selected through a correlation diagram between vulnerabilities and records of previous flood damage, and 2) after review of existing short, mid, and long-term plans or projects in high priority areas, appropriate adaptation measures can be taken as per this study. Future studies should focus on expanding analysis of climate change exposure from sea level rises to other adverse climate related events, including heat waves, torrential rain, and drought etc.

  • PDF

Development of a Dynamic Downscaling Method using a General Circulation Model (CCSM3) of the Regional Climate Model (MM5) (전지구 모델(CCSM3)을 이용한 지역기후 모델(MM5)의 역학적 상세화 기법 개발)

  • Choi, Jin-Young;Song, Chang-Geun;Lee, Jae-Bum;Hong, Sung-Chul;Bang, Cheol-Han
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.79-91
    • /
    • 2011
  • In order to study interactions between climate change and air quality, a modeling system including the downscaling scheme has been developed in the integrated manner. This research focuses on the development of a downscaling method to utilize CCSM3 outputs as the initial and boundary conditions for the regional climate model, MM5. Horizontal/vertical interpolation was performed to convert from the latitude/longitude and hybrid-vertical coordinate for the CCSM3 model to the Lambert-Conformal Arakawa-B and sigma-vertical coordinate for the MM5 model. A variable diagnosis was made to link between different variables and their units of CCSM and MM5. To evaluate the dynamic downscaling performance of this study, spatial distributions were compared between outputs of CCSM/MM5 and NRA/MM5 and statistic analysis was conducted. Temperature and precipitation patterns of CCSM/MM5 in summer and winter showed a similar pattern with those of observation data in East Asia and the Korean Peninsula. In addition, statistical analysis presented that the agreement index (AI) is more than 0.9 and correlation coefficient about 0.9. Those results indicate that the dynamic downscaling system built in this study can be used for the research of interaction between climate change and air quality.