• Title/Summary/Keyword: Climate conditions

Search Result 1,425, Processing Time 0.029 seconds

Mitigation of Greenhouse Gases by Water Management of SRI (System of Rice Intensification) in Rice Paddy Fields (논에서 SRI (System of Rice Intensification) 물 관리 방법을 적용한 온실가스 저감 효과)

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung;Ryu, Jong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1173-1178
    • /
    • 2012
  • Water competition among domestic, industrial and agricultural sectors has been gradually heightened recently in Korea as the lack of water supply is expected in the near future. About 46% of nation's water use is consumed in paddy farming to produce rice. And the conservation of water resource and quality in agricultural sector is a pending issue in the nation's long term water management plan. New paddy rice farming techniques that use significantly less irrigation water are urgently required. System of Rice Intensification (SRI) that is now well known to produce more rice with less water consumption has not been tried in Korea yet. And environmental effect of SRI on greenhouse gases (GHGs) has not been well investigated. The objective of this study was to measure the effect of SRI on GHGs as well as water use and rice yield in a Korean paddy condition. Three experimental runoff plots $5{\times}15m$ in size were prepared at an existing paddy field. Runoff, GHGs emission and water quality were measured during the 2011 growing seasons while a Japonica rice variety was cultivated. Rice plants grew better and healthier in SRI plots than in continuously flooded (CF) and intermittently drained (ID) plots. Rice yield from SRI plots increased 112.8 (ID)~116.1 (CF)% compared with CF and ID plots. Irrigation requirement of SRI plots compared to CF plot reduced by 52.6% and ID plot reduced by 62.0%, meaning that about 37.9~47.4% of irrigation water could be saved. GHGs emission from SRI plots reduced by 71.8% compared to that from CF plot and by 18.4% compared to that from ID plot, meaning that SRI could help contribute to ease the greenhouse gas accumulation in the atmosphere. It was believed that SRI is a promising paddy farming technique that could increase rice yield, and reduce irrigation water requirement and GHGs emission not just in Korea but also other rice farming countries all over the world. However, it was recommended that long term studies under different conditions including rice variety, soil texture, water source, climate need to be conducted for reliable data for the development of environmental policies related to GHGs emission control and management.

Assessing the Benefits of Incorporating Rainfall Forecasts into Monthly Flow Forecast System of Tampa Bay Water, Florida (하천 유량 예측 시스템 개선을 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로)

  • Hwang, Sye-Woon;Martinez, Chris;Asefa, Tirusew
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.127-135
    • /
    • 2012
  • This paper introduced the flow forecast modeling system that a water management agency in west central Florida, Tampa Bay Water has been operated to forecast monthly rainfall and streamflow in the Tampa Bay region, Florida. We evaluated current 1-year monthly rainfall forecasts and flow forecasts and actual observations to investigate the benefits of incorporating rainfall forecasts into monthly flow forecast. Results for rainfall forecasts showed that the observed annual cycle of monthly rainfall was accurately reproduced by the $50^{th}$ percentile of forecasts. While observed monthly rainfall was within the $25^{th}$ and $75^{th}$ percentile of forecasts for most months, several outliers were found during the dry months especially in the dry year of 2007. The flow forecast results for the three streamflow stations (HRD, MB, and BS) indicated that while the 90 % confidence interval mostly covers the observed monthly streamflow, the $50^{th}$ percentile forecast generally overestimated observed streamflow. Especially for HRD station, observed streamflow was reproduced within $5^{th}$ and $25^{th}$ percentile of forecasts while monthly rainfall observations closely followed the $50^{th}$ percentile of rainfall forecasts. This was due to the historical variability at the station was significantly high and it resulted in a wide range of forecasts. Additionally, it was found that the forecasts for each station tend to converge after several months as the influence of the initial condition diminished. The forecast period to converge to simulation bounds was estimated by comparing the forecast results for 2006 and 2007. We found that initial conditions have influence on forecasts during the first 4-6 months, indicating that FMS forecasts should be updated at least every 4-6 months. That is, knowledge of initial condition (i.e., monthly flow observation in the last-recent month) provided no foreknowledge of the flows after 4-6 months of simulation. Based on the experimental flow forecasts using the observed rainfall data, we found that the 90 % confidence interval band for flow predictions was significantly reduced for all stations. This result evidently shows that accurate short-term rainfall forecasts could reduce the range of streamflow forecasts and improve forecast skill compared to employing the stochastic rainfall forecasts. We expect that the framework employed in this study using available observations could be used to investigate the applicability of existing hydrological and water management modeling system for use of stateof-the-art climate forecasts.

Occurrence according to Resource Utilization Characteristics of Higher Fungi in Naejangsan National Park (내장산 국립공원 고등균류의 자원이용적 특성에 따른 발생)

  • Kim, Chong-Young;Jang, Seog-Ki;Kim, Mi-Suk
    • The Korean Journal of Mycology
    • /
    • v.45 no.4
    • /
    • pp.270-283
    • /
    • 2017
  • In a survey on higher fungi from 2004 to 2011, and also in 2013, in Naejangsan National Park, a total of 2 divisions, 7 classes, 21 orders, 74 families, 229 genera, and 521 species were observed. Dominant species belonged to the families Boletaceae and Russulaceae (44 species), Agaricaceae (35 species), Polyporaceae (29 species), and Amanitaceae (27 species). For the habitat environment, 21 families, 44 genera, and 192 species (36.9%) (63 species of poisonous mushroom, 79 species of edible and medicinal mushroom, and 43 species of unknown edible & poisonous mushroom) of ectomycorrhizal mushrooms were found; 41 families, 118 genera, and 199 species (38.2%) (14 species of poisonous mushroom, 85 species of edible & medicinal mushroom, and 90 species of unknown edible and poisonous mushroom) of litter decomposing and wood rotting fungi were found, and 29 families, 66 genera, and 121 species (23.2%) (8 species of poisonous mushroom, 54 species of edible and medicinal mushroom, and 47 species of unknown edible & poisonous mushroom) of grounding fungi were found, and 9 species were the other habitat. In terms of seasonality, most of the higher fungi were found in July, August, and September. In terms of altitude, the most species were observed at 200~299 m, and populations dropped by a significant level at an altitude of 700 m or higher. It seemed that the most diversified higher fungi occurred at climate conditions with a mean air temperature of $25.0{\sim}28.9^{\circ}C$, a maximum air temperature of $30.0{\sim}33.9^{\circ}C$, a minimum air temperature of $21.0{\sim}24.9^{\circ}C$, a relative humidity of 73.0~79.9%, and over 400.0 mm of rainfall.

Occurrence Characteristics of Weed Flora by Regions and Agro-Climatic Zonal in Paddy Fields of Korea (우리나라 지역별 및 농업기후지대별 논잡초 발생상황)

  • Lee, In-Yong;Oh, Young-Ju;Park, Jungsoo;Choi, Jun-Keun;Kim, Eun Jeong;Park, Kee Woong;Cho, Seng-Hyun;Kwon, Oh-Do;Im, Il-Bin;Kim, Sang-Kuk;Seong, Deok-Gyeong;Kim, Chang-Seog;Lee, Jeongran;Seo, Hyun-A;Kim, Whan-Su
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • Ninety species belonging to 28 families of weeds were identified in Korean rice fields. They were divided by eight provinces and 19 agro-climatic zones to be used as basic data of weed control. Looking at the regional weed occurrence, there were 52 species of 20 families in Gyeonggi, 37 species of 17 families in Gangwon, 41 species of 15 families in Chungbuk, 21 species of 12 families in Chungnam, 24 species of 13 families in Jeonbuk, 54 species of 21 families in Chonnam, 36 species of 20 families in Gyeongbuk, and 32 species of 16 families in Gyeongnam province, respectively. The most dominant family was Poaceae followed by Cyperaceae and Asteraceae. Mostly dominant species were Echinochloa spp., Monochoria vaginalis var. plantaginea, Scirpus juncoides var. hotarui, Eleocharis kuroguwai, and Sagittaria sagittifolia subsp. leucopetala with slight differences among the provinces. Although there were some differences in 18 climate zones from Taebaek sub-highlands to the southern part of the East Coast (except for the Taebaek Highland), the dominant species were Echinochloa spp., Monochoria vaginalis var. plantaginea and Scirpus juncoides var. hotarui. The most dominant family was Cyperaceae followed by Poaceae and Asteraceae. The differences of weed occurrence between provinces and agro-climatic zones were largely influenced by various weather conditions rather than the provinces. The changes in cultivation mode and herbicide use might influence as well.

Monitoring Technique of Pumpkin Fruit Flies Using Terpinyl Acetate-Protein Diet Lure and Development of Its Spraying Formulation for The Fly Control (Terpinyl acetate-단백질먹이 유인제를 이용한 호박과실파리류 연중발생 모니터링 기술 및 살포용 방제 제형 개발)

  • Kim, Yonggyun;Ahn, Jeong Joon
    • Korean journal of applied entomology
    • /
    • v.59 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • Two tephritid fruit flies are infesting pumpkins in Korea. Both are classified into genus of Zeugodacus. The striped fruit fly, Z. scutellata, males are attracted to a lure called Cuelure (CL), which has been used to monitor the occurrence of this fruit fly in the crop field. In contrast, no effective male lure was not developed to monitor the pumpkin fruit fly, Z. depressa. Protein diet lure has been used to attract females of most fruit flies. The addition of terpinyl acetate (TA) was effective to increase the attractiveness of Z. depressa. This study aimed to monitor the occurrence of Z. depressa in pumpkin field with TA-protein diet lure. To validate the efficiency of TA-protein diet lure, Z. scutellata was monitored in a year of 2019 using CL and TA-protein diet lures, and the yearly monitoring data were compared. The occurrence patterns derived from both lures were similar except late season after October. The extended catches of TA-protein diet lure might be explained by the adult diapause induction of Z. scutellata at late September. Monitoring Z. depressa with TA-protein diet lure gave two peaks at mid July and August-September, in which more than 80% catches were females. Based on the attractiveness of TA-protein diet lure, its wettable powder with an addition of spinosad insecticide was formulated and sprayed to pumpkin crops. After 7 days post-spray, the control efficacy recorded more than 70%. However, the control efficacies decreased as the time progressed after the spray. These results demonstrated the application of TA-protein diet lure for monitoring occurrence of Z. depressa in pumpkin-cultivating field conditions. The wettable powder containing spinosad can be applied to develop a new control agent against two pumpkin fruit flies.

Assessment of Site Environmental Factors on the Structure of Forest Vegetation in Naejang-san National Park Using Canonical Correlation Analysis (정준상관분석을 통한 내장산국립공원 산림식생구조의 입지환경 평가)

  • Kim, Tae-Geun;Cho, Young-Hwan;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.561-569
    • /
    • 2013
  • This study examines locational environment factors that may affect the vegetation structure in the forests of Naejang National Park. To that end, we selected LAI (Leaf Area Index), diameter at breast height, and tree height as structural variables as well as altitude above sea level, gradient, slope direction, soil moisture, topographic location, and amount of solar radiation as locational environment factors, using the method of canonical correlation analysis in order to find out correlation between them. As to the simple correlation between the locational environment factors and structural variables, the correlation coefficient was relatively low (0.6). The values of LAI, measured along the ridge with higher altitudes, decreased as the soil moisture and solar radiation increased. However, LAI increased as the gradient increased and the slope direction faced the north (farther from the east). In respect of the diameter at breast height, the diameter decreased as the altitude and gradient increased. But the diameter increased as the moisture and solar radiation increased. The tree height decreased as the moisture increased and the site was closer to the ridge. These various correlations show a variety of locational environment factors in the national park, implying that the structural variables are affected by complex locational environment factors. This study conducted a canonical correlation analysis on locational environment factors which may affect the vegetation structure, and the result showed that LAI increased and tree height & diameter at breast height decreased as the solar radiation & moisture decreased and altitude increased. Although more factors that may affect vegetation structure (e.g. climate) should be taken into account, this study is significant in that the vegetation structure, which can adapt to more unfavorable conditions in terms of solar radiation, moisture, and higher altitudes, could be inferred in a statistical way. The results of this study, especially the locational environment factors based on DEM, can be used for assessing diversity of vegetation structure in a forest and for monitoring the structure in a national park on a regular basis so as to establish more effective maintenance plans of a park.

Differential Susceptibility to High Temperature and Variation of Seasonal Occurrence between Spodoptera exigua and Plutella xylostella (파밤나방과 배추좀나방의 고온 감수성 차이와 연중 발생 변이)

  • Kim, Minhyun;Lee, Seunghee;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.55 no.1
    • /
    • pp.17-26
    • /
    • 2016
  • Climate change has been regarded as one of main factors to change Korean insect pest fauna. Especially, a global warming model predicts to expand habitat for insect pests originated from tropical or subtropical regions. Two insect pests, the beet armyworm (Spodoptera exigua) and the diamondback moth (Plutella xylostella), are known to overwinter in some greenhouse conditions without diapause induction in Korea. There was a clear difference between these two insects in seasonal occurrence. P. xylostella occurred only at early spring and fall seasons, but did not occur during summer. In contrast, S. exigua maintained their occurrence from late spring to fall seasons. This study set up a hypothesis that the difference in the seasonal occurrence may be resulted from variation in susceptibility to high temperature. To test the hypothesis, heat tolerance was compared between these two insects. Exposure to $42^{\circ}C$ for 40 min killed 100% individuals of P. xylostella larvae. However, most larvae of S. exigua survived in response to $42^{\circ}C$ even for 80 min. Heat tolerance varied among developmental stages in both insects. Highest tolerant stages were $4^{th}$ instar larvae and adults for P. xylostella, but $1^{st}$ instar larvae for S. exigua. Pre-exposure to $37^{\circ}C$ for 30 min significantly increased heat tolerance in both insects. Induction of heat tolerance accompanied with significant increase of glycerol contents in the hemolymph in both insects and up-regulation of three heat shock protein expressions in S. exigua. These results suggest that the differential susceptibility to high temperature explains the disappearance of P. xylostella during summer, at which S. exigua maintains its occurrence.

Effects of Elevated Spring Temperatures on the Growth and Fruit Quality of the Mandarin Hybrid 'Shiranuhi' (봄철 가온처리가 부지화의 생장과 과실품질에 미치는 영향)

  • Moon, Young-Eel;Kang, Seok-Beom;Han, Seung-Gab;Kim, Yong-Ho;Choi, Young-Hun;Koh, Seok Chan;Oh, Soonja
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.459-469
    • /
    • 2015
  • The effects of elevated spring temperatures on the growth and fruit quality of the mandarin hybrid 'Shiranuhi' [(Citrus unshiu ${\times}$ C. sinensis) ${\times}$ C. reticulata] were investigated in plastic greenhouses, to develop a cropping system to improve the quality of the fruit and increase the income of growers on Jeju Island, South Korea. Under conditions of elevated temperature I ($25/15^{\circ}C$, day/night) and elevated temperature II ($28/18^{\circ}C$, day/night) during early spring, budburst was advanced by 11 and 15 d, and full bloom by 22 and 45 d, respectively, compared to those of the plants grown at ambient air temperature in a plastic greenhouse. Elevated temperatures decreased the number of spring shoots but increased mean spring shoot length and leaf area. Growing 'Shiranuhi' trees at elevated temperatures resulted in increases in mean fruit weight and fruit L/D ratio (> 1.0). In addition, fruit color development was significantly advanced in trees grown under elevated temperatures during early spring, which allowed the fruit to be harvested 1-2 months earlier than trees grown under ambient air temperature. Fruit soluble solids content (SSC) and titratable acidity (TA) at harvest were similar between elevated temperature I and ambient air temperature, but were significantly higher than at elevated temperature II. Considering fruit quality, harvest time, and yield, the elevated temperature treatment regime of $25/15^{\circ}C$ (day/night) during early spring could be useful for cultivation of the mandarin hybrid 'Shiranuhi' to increase the income of growers.

The Use of Green Manure Crops as a Nitrogen Source for Lettuce and Chinese Cabbage Production in Greenhouse (녹비작물의 토양환원이 상추 및 얼갈이 배추의 수량에 미치는 영향)

  • Lim, Tae-Jun;Kim, Ki-In;Park, Jin-Myeon;Lee, Seong-Eun;Hong, Soon-Dal
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.212-216
    • /
    • 2012
  • BACKGROUND: Green manure and graminaceousmanure crops have several benefits, such as improving soil physical and chemical properties and utilizing excessive greenhouse nutrients that they have a potential to be a water pollutant source. METHODS AND RESULTS: The objective of this study was to investigate nitrogen (N) supplying capabilities of green manure and graminaceous manure crops for lettuce (Lactuca sativa L.) and Chinese cabbage (Brassica campestris L.) grown under greenhouse conditions. For this two leguminous manures (Crotalaria juncea (Cr.) and Sesbaniaexaltata (Se.)) and two graminaceous manures (Sorghum bicolor; Haussolgo(Ha.) and Sudangrass (Sg.)) in the greenhouse were grown, cut, and incorporated into the greenhouse soil before planting. Chemical nitrogen (N) fertilizer rate was estimated based on N recommendation for lettuce and Chinese cabbage. 100% of the N recommended rates (1N) were 70 kg N $ha^{-1}$ for lettuce and 60 kg N $ha^{-1}$ for Chinese cabbage and 50% of the N recommendation rates (0.5N) were 35 kg N $ha^{-1}$ for lettuce and 30 kg N $ha^{-1}$ for Chinese cabbage. Nitrogen treatments were control (0N), Cr., Se., Cr + 0.5 N, Se + 0.5 N, Ha + 0.5 N, Sg + 0.5 N, and N recommendation rate (1N). Incorporated N from green manure and graminaceous manure crops were 130, 116, 93, and 87 kg N $ha^{-1}$ for Cr., Se., Ha., and Sg., respectively. Lettuce and Chinese cabbage were grown after incorporated green manure crops into the greenhouse soil. There was no significant difference in lettuce and Chinese cabbage yields under N treatments except control (0 kg/ha). Nitrogen use efficiency (NUE)was from 44% to 73% and the highest NUE was under Se. treatment. Although yields were not statistically different under N treatments except control, actual yield increase ranged from 170 to 1,100 kg/ha for lettuce and ranged from 2,770 to 5,210 kg/ha for Chinese cabbage compared to yield under N recommendation rate. Estimated economic benefit from this would be higher approximately between \2,770,000 and \5,210,000/ha under N treatments except control than the N recommendation rate. CONCLUSION: These results suggest that incorporating green manure crops, such as Cr. and SeSe. into soil or adding 0.5 N after incorporation of them can be beneficial in many ways in that it increases economic return because of yield increase, reduces the use of chemical N, and decreases the negative environmental impact on water quality because excessive N in the greenhouse soil can be used by green manure crops during the fallow.

Diurnal and Seasonal Variations of the Radon Progeny Concentrations in the open Atmosphere and the Influence of Meteorological Parameters (대기중 라돈자핵종 농도의 일일 및 계절적 변화와 기상인자가 미치는 영향)

  • Lee, Dong-Myung;Kim, Chang-Kyu;Rho, Byung-Hwan;Lee, Seung-Chan;Kang, Hee-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.207-216
    • /
    • 2000
  • Continuous measurements of radon progeny concentrations in the open atmosphere and measurements of meteorological parameters were performed in Tajeon, using a continuous gross alpha/beta aerosol monitor and a weather measuring equipment between July 1999 and July 2000. These data were analyzed for half-hourly, daily, and seasonal variations. The distribution of daily averaged equilibrium equivalent radon concentration$(EEC_{Rn})$ had an arithmetic mean value of $11.3{\pm}5.86Bqm^{-3}$ with the coefficient of variation of about 50% and the geometric mean was $10.3Bqm^{-3}$. The $EEC_{Rn}$ varies between 0.83 and $43.3Bqm^{-3}$, depending on time of day and weather conditions. Half-hourly averaged data indicated a diurnal pattern with the outdoor $EEC_{Rn}$ reaching a maximum at sunrise and a minimum at sunset. The pattern of the seasonal variation of the $EEC_{Rn}$ in Taejon had a tendency of minimum concentration occurring in the summer(July) and maximum concentration occurring in the late autumn(November). But the seasonal variation of the $EEC_{Rn}$ is expect to vary greatly from place to place. The outdoor $EEC_{Rn}$ was highly dependent on the local climate features. Particularly the $EEC_{Rn}$an rapidly drops less than $5Bqm^{-3}$ in case of blowing heavily higher than wind speed of $6msec^{-1}$, reversely the days with more than $30Bqm^{-3}$ were at a calm weather condition with the wind speed of lower than $1msec^{-1}$.

  • PDF