• 제목/요약/키워드: Climate changes

검색결과 1,843건 처리시간 0.023초

기후변화에 따른 교통불편익산정에 관한 연구 (Calculation of the Disbenefit on Roads by Climate Changes)

  • 손지언;이승재;김주영;김창균
    • 한국방재학회 논문집
    • /
    • 제10권3호
    • /
    • pp.45-52
    • /
    • 2010
  • 기후변화와 교통의 관계는 크게 기후변화가 교통에 미치는 영향과 교통이 기후변화에 미치는 영향으로 나눌 수 있다. 본 연구에서는 전자의 관점에서 폭설이 도시교통에 미치는 영향을 파악하였으며, 통행자의 불편익에 대한 방안을 제시함으로 폭설에 대해 효과적으로 대처하고자 하였다. 예기치 못한 기후변화의 파급효과는 통행시간과 운행비용, 사고비용 등으로 분석되었으며, 이를 기반으로 해당구간의 융설시스템(Snow Melting System) 도입에 따른 사업의 효과성을 분석하였다. 본 연구의 결과는 기후변화로 인한 교통불편익을 최소화하는 방재시설물 설치를 위한 평가기준으로 적용될 수 있을 것이다.

Analysis of Temporal Change in Soil Erosion Potential at Haean-myeon Watershed Due to Climate Change

  • Lee, Wondae;Jang, Chunhwa;Kum, Donghyuk;Jung, Younghun;Kang, Hyunwoo;Yang, Jae E.;Lim, Kyoung Jae;Park, Youn Shik
    • 한국토양비료학회지
    • /
    • 제47권2호
    • /
    • pp.71-79
    • /
    • 2014
  • Climate change has been social and environmental issues, it typically indicates the trend changes of not only temperature but also rainfall. There is a need to consider climate changes in a long-term soil erosion estimation since soil loss in a watershed can be varied by the changes of rainfall intensity and frequency of torrential rainfall. The impacts of rainfall trend changes on soil loss, one of climate changes, were estimated using Sediment Assessment Tool for Effective Erosion Control (SATEEC) employing L module with current climate scenario and future climate scenario collected from the Korea Meteorological Administration. A 62 $km^2$ watershed was selected to explore the climate changes on soil loss. SATEEC provided an increasing trend of soil loss with the climate change scenarios, which were 182 ton/ha/year in 2010s, 169 ton/ha/year in 2020s, 192 ton/ha/year in 2030s,182 ton/ha/year in 2040s, and 218 ton/ha/year in 2050s. Moreover, it was found that approximately 90% of agricultural area in the watershed displayed the soil loss of 50 ton/ha/year which is exceeding the allow able soil loss regulation by the Ministry of Environment.

Variations in Root and Tuber Crops Production due to Climate Change

  • Hwang, Sung-Eun;Chon, Chun-Hwang;Park, Geon-Young
    • 통합자연과학논문집
    • /
    • 제8권2호
    • /
    • pp.135-140
    • /
    • 2015
  • Climate change which occuring the recent abrupt fluctuations in meteorological and climatological elements is bound, brings about more significant impacts and changes in human life One of the most important problems due to the impacts of climate change tends to have been decreased the food production, which is expected to make crop resources more and more important. Accordingly, agricultural meteorology should also become more important. In this study, the correlation between meteorological elements and root and tuber crops (potatoes and sweet potatoes), which are emergency crops, and meteorological elements were analyzed, and the impacts of climate changes on the production of such crops were examined. This study concludes that agriculture and food resources are important, and suggests that we should prepare for changes in crops, the weaponization of food, and the lack of water resources in the future. The meteorological element and crops element correlation analysis results. Sweet potatoes, which are negatively influenced by climate change, need breeding improvement and cultivation method development, and potatoes, which are positively influenced by climate change, require preparations for climate changes that exceed the climatic limit. The variations of agricultural production contributed to changes in crop production. Therefore, the importance of agricultural meteorology and the food crop industry should be fully recognized to prepare for climate change.

기후변화에 따른 낙동강 유역의 기온 경향성 및 수온과의 탄성도 분석 (Analysis for Air Temperature Trend and Elasticity of Air-water Temperature according to Climate Changes in Nakdong River Basin)

  • 손태석;임용균;백명기;신현석
    • 한국물환경학회지
    • /
    • 제26권5호
    • /
    • pp.822-833
    • /
    • 2010
  • Temperature increase due to climate changes causes change of water temperature in rivers which results in change of water quality etc. and the change of river ecosystem has a great impact on human life. Analyzing the impact of current climate changes on air and water temperature is an important thing in adapting to the climate changes. This study examined the effect of climate changes through analyzing air temperature trend for Nakdong river basin and analyzed the elasticity of air-water temperature to understand the effect of climate changes on water temperature. For analysis air temperature trend, collecting air temperature data from the National Weather Service on main points in Nakdong river basin, and resampling them at the units of year, season and month, used as data for air temperature trend analysis. Analyzing for elasticity of air-water temperature, the data were collected by the Water Environment Information system for water temperature, while air temperature data were collected at the National Weather Service point nearest in the water temperature point. And using the results of trend analysis and elasticity analysis, the effect of climate changes on water temperature was examined estimating future water temperature in 20 years and 50 years after. It is judged that analysis on mutual impact between factors such as heat budget, precipitation and evapotranspiration on river water temperature affected by climate changes and river water temperature is necessary.

기후변화에 대응하는 과학기술의 책임과 기후변화윤리 - 책임을 중심으로 - (The Responsibilities of the Science Technology and the Ethics of the Climate Changes)

  • 변순용
    • 한국철학논집
    • /
    • 제28호
    • /
    • pp.7-34
    • /
    • 2010
  • 기후변화와 관련된 윤리적인 문제는 지금까지 인류가 겪어왔던 유형의 문제와는 성격이 매우 다르다. 기후변화의 예측, 완화 및 적응을 위한 인간의 행위에서 요청되는 윤리의 문제를 접근하는데 있어서 우선 기후변화윤리의 담론에서 나타나는 인간중심주의를 벗어나야 한다. 강한 의미의 인간중심주의는 인간 종 이기주의라는 비판을 거세게 받고 있으며, 대부분의 환경교육에서는 약한 의미의 생태학적으로 계몽된 인간중심주의 논리로 환경윤리적 요청을 정당화하고 있다. 기후변화윤리의 담론에서는 이러한 인간중심주의적 사고를 지양해야 한다. 기후변화의 윤리와 과학기술에서 탈인간중심주의화를 통해 인간의 도덕적인 고려의 대상범위를 확장해야 한다. 이를 통해 기후변화윤리에서 제기되는 요청들에 대한 사회적인 합의를 도출해야 한다. 물론 이러한 합의는 과학적인 근거와 사회구성원들의 가치에 기초해야 한다. 둘째, 기후변화로 파생되는 문제는 시급한 문제이면서도 장기적인 성격의 문제이다. 그리고 기후변화에 대한 과학적인 사실의 전달도 중요하지만, 윤리교육을 통해 기후변화가 갖는 윤리적 의미가 지속적으로 강조되어야 한다. 끝으로, 기후변화윤리교육에서 지속 가능성은 기후변화윤리에서 제기되는 다양한 당위적 요청들을 정당화하는데 매우 중요하게 작용할 것이다.

간월호 유역의 토지이용 및 기후변화에 따른 논밭 필요수량 변화 추정 (Estimation of Crop Water Requirement Changes Due to Future Land Use and Climate Changes in Lake Ganwol Watershed)

  • 김시내;김석현;황순호;전상민;송정헌;강문성
    • 한국농공학회논문집
    • /
    • 제63권6호
    • /
    • pp.61-75
    • /
    • 2021
  • This study aims to assess the changes in crop water requirement of paddy and upland according to future climate and land use changes scenarios. Changes in the spatiotemporal distribution of temperature and precipitation are factors that lower the stability of agricultural water supply, and predicting the changes in crop water requirement in consideration of climate change can prevent the waste of limited water resources. Meanwhile, due to the recent changes in the agricultural product consumption structure, the area of paddy and upland has been changing, and it is necessary to consider future land use changes in establishing an appropriate water use plan. Climate change scenarios were derived from the four GCMs of the CMIP6, and climate data were extracted under two future scenarios, namely SSP1-2.6 and SSP5-8.5. Future land use changes were predicted using the FLUS (Future Land Use Simulation) model. Crop water requirement in paddy was calculated as the sum of evapotranspiration and infiltration based on the water balance in a paddy field, and crop water requirement in upland was estimated as the evapotranspiration value by applying Penman-Monteith method. It was found that the crop water requirement for both paddy and upland increased as we go to the far future, and the degree of increase and variability by time showed different results for each GCM. The results derived from this study can be used as basic data to develop sustainable water resource management techniques considering future watershed environmental changes.

PRECIS를 이용한 우리나라 기후변화 기상자료의 생성 (Generation of Weather Data for Future Climate Change for South Korea using PRECIS)

  • 이관호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.54-58
    • /
    • 2011
  • According to the Fourth Assessment Report of the Inter governmental Panel on Climate Change(IPCC), climate change is already in progress around the world, and it is necessary to start mitigation and adaptation strategies for buildings in order to minimize adverse impacts. It is likely that the South Korea will experience milder winters and hotter and more extreme summers. Those changes will impact on building performance, particularly with regard to cooling and ventilation, with implications for the quality of the indoor environment, energy consumption and carbon emissions. This study generate weather data for future climate change for use in impacts studies using PRECIS (Providing REgional Climate for Impacts Studies). These scenarios and RCM (Regional Climate Model) are provided high-resolution climate-change predictions for a region generally consistent with the continental-scale climate changes predicted in the GCM (Global Climate Model).

  • PDF

고해상도 기후시나리오를 이용한 논용수 수요량 및 단위용수량의 기후변화 영향 분석 (The Impacts of Climate Change on Paddy Water Demand and Unit Duty of Water using High-Resolution Climate Scenarios)

  • 유승환;최진용;이상현;오윤경;박나영
    • 한국농공학회논문집
    • /
    • 제54권2호
    • /
    • pp.15-26
    • /
    • 2012
  • For stable and sustainable crop production, understanding the effects of climate changes on agricultural water resources is necessary to minimize the negative effects which might occur due to shifting weather conditions. Although various studies have been carried out in Korea concerning changes in evapotranspiration and irrigation water requirement, the findings are still difficult to utilize fordesigning the demand and unit duty of water, which are the design criteria of irrigation systems. In this study, the impact analysis of climate changes on the paddy water demand and unit duty of water was analyzed based on the high resolution climate change scenarios (specifically under the A1B scenario) provided by the Korea Meteorological Administration. The result of the study indicated that average changes in the paddy water demand in eight irrigation districts were estimated as -2.4 % (2025s), -0.2 % (2055s), and 3.2 % (2085s). The unit duty of water was estimated to increase on an average within 2 % during paddy transplanting season and within 5 % during growing season after transplanting. This result could be utilized for irrigation system design, agricultural water resource development, and rice paddy cultivation policy-making in South Korea.

IPCC 제5차 과학평가보고서 고찰 (In-depth Review of IPCC 5th Assessment Report)

  • 박일수;장유운;정경원;이강웅;;권원태;윤원태
    • 한국대기환경학회지
    • /
    • 제30권2호
    • /
    • pp.188-200
    • /
    • 2014
  • The IPCC 5th Assessment Report (Climate Change 2013: The Physical Science Basis) was accepted at the 36th Session of the IPCC on 26 September 2013 in Stockholm, Sweden. It consists of the full scientific and technical assessment undertaken by Working Group I. This comprehensive assessment of the physical aspects of climate change puts a focus on those elements that are relevant to understand past, document current, and project future of climate change. The assessment builds on the IPCC Fourth Assessment Report and the recent Special Report on Managing the Risk of Extreme Events and Disasters to Advance Climate Change Adaptation. The assessment covers the current knowledge of various processes within, and interactions among, climate system components, which determine the sensitivity and response of the system to changes in forcing, and they quantify the link between the changes in atmospheric constituents, and hence radiative forcing, and the consequent detection and attribution of climate change. Projections of changes in all climate system components are based on model simulations forced by a new set of scenarios. The report also provides a comprehensive assessment of past and future sea level change in a dedicated chapter. The primary purpose of this Technical Summary is to provide the link between the complete assessment of the multiple lines of independent evidence presented in the main report and the highly condensed summary prepared as Policy makers Summary. The Technical Summary thus serves as a starting point for those readers who seek the full information on more specific topics covered by this assessment. Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased. Total radiative forcing is positive, and has led to an uptake of energy by the climate system. The largest contribution to total radiative forcing is caused by the increase in the atmospheric concentration of $CO_2$ since 1750. Human influence on the climate system is clear. This is evident from the increasing greenhouse gas concentrations in the atmosphere, positive radiative forcing, observed warming, and understanding of the climate system. Continued emissions of greenhouse gases will cause further warming and changes in all components of the climate system. Limiting climate change will require substantial and sustained reductions of greenhouse gas emissions. The in-depth review for past, present and future of climate change is carried out on the basis of the IPCC 5th Assessment Report.

HadGEM2-AO를 이용한 연직기온 분포와 대류권계면 높이 변화 미래전망 (Vertical Distribution of Temperature and Tropopause Height Changes in Future Projections using HadGEM2-AO Climate Model)

  • 이재호;백희정;조천호
    • 대기
    • /
    • 제23권4호
    • /
    • pp.367-375
    • /
    • 2013
  • We present here the future changes in vertical distribution of temperature and tropopause height using the HadGEM2-AO climate model forced with Representative Concentration Pathways (RCPs) scenarios. Projected changes during the 21st century are shown as differences from the baseline period (1971~2000) for global vertical distribution of temperature and tropopause height. All RCP scenarios show warming throughout the troposphere and cooling in the stratosphere with amplified warming over the lower troposphere in the Northern Hemisphere high latitudes. Upper troposphere warming reaches a maximum in the tropics at the 300 hPa level associated with lapse-rate feedback. Also, the cooling in the stratosphere and the warming in the troposphere raises the height of the tropopause.