• 제목/요약/키워드: Climate Variability

검색결과 462건 처리시간 0.027초

위성 고도계와 해수면 재구성 자료를 이용한 기후변동성에 따른 태평양 해수면 변화 (Pacific Sea Level Variability associated with Climate Variability from Altimetry and Sea Level Reconstruction Data)

  • 차상철;문재홍
    • Ocean and Polar Research
    • /
    • 제40권1호
    • /
    • pp.1-13
    • /
    • 2018
  • Previous studies have indicated a great regional difference in Sea Level Rise (SLR) in the Pacific and it has been suggested that this is linked to climate variability over the past two decades. In this study, we seek to identify the possible linkage between regional sea level and Pacific climate variability from altimetry-based sea level data (1993-2012) and further investigate how the Pacific sea level has changed spatially and temporally over the past 60 years from long-term sea level reconstruction data (1953-2008). Based on the same method as Zhang and Church (2012), the Inter-annual Climate Index (ICI) associated with the El $Ni{\tilde{n}}o-Southern$ Oscillation (ENSO) and the Decadal Climate Index (DCI) associated with Pacific Decadal Oscillation (PDO) are defined and then the multiple variable linear regression is used to analyze quantitatively the impact of inter-annual and decadal climate variability on the regional sea levels in the Pacific. During the altimeter period, the ICI that represents ENSO influence on inter-annual time scales strongly impacts in a striking east-west "see-saw mode" on sea levels across the tropical Pacific. On the other hand, the decadal sea level pattern that is linked to the DCI has a broad meridional structure that is roughly symmetric in the equator with its North Pacific expression being similar to the PDO, which largely contributes to a positive SLR trend in the western Pacific and a negative trend in the eastern Pacific over the two most recent decades. Using long-term sea level reconstruction data, we found that the Pacific sea levels have fluctuated in the past over inter-annual and decadal time scales and that strong regional differences are presented. Of particular interest is that the SLR reveals a decadal shift and presents an opposite trend before and after the mid-1980s; i.e., a declining (rising) trend in the western (eastern) Pacific before the mid-1980s, followed by a rising (declining) trend from the mid-1980s onward in the western (eastern) Pacific. This result indicates that the recent SLR patterns revealed from the altimeters have been persistent at least since the mid-1980s.

Relationship between Interannual Variability of Phytoplankton and Tropical Cyclones in the Western North Pacific

  • Park, Jong-Yeon;Kug, Jong-Seong;Park, Ji-Soo;Chang, Chan-Joo
    • Ocean and Polar Research
    • /
    • 제34권1호
    • /
    • pp.29-35
    • /
    • 2012
  • We investigated the interannual relationship between chlorophyll concentrations in the western North Pacific and tropical cyclones (TCs) in the western North Pacific by analyzing data collected for >12 years. Despite the short-term scale (2~3 weeks) in the contribution of tropical cyclones to phytoplankton, the current study revealed that the long-term chlorophyll variability in the western North Pacific is profoundly related to long-term variability in the frequency of TCs. It was also found that the Pacific decadal oscillation (PDO) tends to control such relationships between the 2 bio-physical systems. This result suggests a significant climatic relationship between TC activity and marine phytoplankton, and also suggests the possibility of more accurate estimations of primary production in the western North Pacific.

기상청 기후예측시스템(GloSea6-GC3.2)의 열대저기압 계절 예측 특성 (The Seasonal Forecast Characteristics of Tropical Cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2))

  • 이상민;현유경;신범철;지희숙;이조한;황승언;부경온
    • 대기
    • /
    • 제34권2호
    • /
    • pp.97-106
    • /
    • 2024
  • The seasonal forecast skill of tropical cyclones (TCs) in the Northern Hemisphere from the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 6 (GloSea6) hindcast has been verified for the period 1993 to 2016. The operational climate prediction system at KMA was upgraded from GloSea5 to GloSea6 in 2022, therefore further validation was warranted for the seasonal predictability and variability of this new system for TC forecasts. In this study, we examine the frequency, track density, duration, and strength of TCs in the North Indian Ocean, the western North Pacific, the eastern North Pacific, and the North Atlantic against the best track data. This methodology follows a previous study covering the period 1996 to 2009 published in 2020. GloSea6 indicates a higher frequency of TC generation compared to observations in the western North Pacific and the eastern North Pacific, suggesting the possibility of more TC generation than GloSea5. Additionally, GloSea6 exhibits better interannual variability of TC frequency, which shows relatively good correlation with observations in the North Atlantic and the western North Pacific. Regarding TC intensity, GloSea6 still underestimates the minimum surface pressures and maximum wind speeds from TCs, as is common among most climate models due to lower horizontal resolutions. However, GloSea6 is likely capable of simulating slightly stronger TCs than GloSea5, partly attributed to more frequent 6-hourly outputs compared to the previous daily outputs.

1904년 이래의 부산 기후 변동성 및 생활기상지수들의 기후변화 특성 연구 (A Study on Characteristics of Climate Variability and Changes in Weather Indexes in Busan Since 1904)

  • 전하은;하경자;김혜렴
    • 대기
    • /
    • 제33권1호
    • /
    • pp.1-20
    • /
    • 2023
  • Holding the longest observation data from April 1904, Busan is one of the essential points to understand the climate variability of the Korean Peninsula without missing data since implementing the modern weather observation of the South Korea. Busan is featured by coastal areas and affected by various climate factors and fluctuations. This study aims to investigate climate variability and changes in climatic variables, extremes, and several weather indexes. The statistically significant change points in daily mean rainfall intensity and temperature were found in 1964 and 1965. Based on the change point detection, 117 years were divided into two periods for daily mean rainfall intensity and temperature, respectively. In the long-term temperature analysis of Busan, the increasing trend of the daily maximum temperature during the period of 1965~2021 was larger than the daily mean temperature and the daily minimum temperature. Applying Ensemble Empirical Mode Decomposition, daily maximum temperature is largely affected by the decadal variability compared to the daily mean and minimum temperature. In addition, the trend of daily precipitation intensity from 1964~2021 shows a value of about 0.50 mm day-1, suggesting that the rainfall intensity has increased compared to the preceding period. The results in extremes analysis demonstrate that return values of both extreme temperatures and precipitation show higher values in the latter than in the former period, indicating that the intensity of the current extreme phenomenon increases. For Wet-Bulb Globe Temperature (effective humidity), increasing (decreasing) trend is significant in Busan with the second (third)-largest change among four stations.

CEOP Annual Enhanced Observing Period Starts

  • Koike, Toshio
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.343-346
    • /
    • 2002
  • Toward more accurate determination of the water cycle in association with climate variability and change as well as baseline data on the impacts of this variability on water resources, the Coordinated Enhanced Observing Period (CEOP) was launched on July 1,2001. The preliminary data period, EOP-1, was implemented from July to September in 2001. The first annual enhanced observing period, EOP-3, is going to start on October 1,2002. CEOP is seeking to achieve a database of common measurements from both in situ and satellite remote sensing, model output, and four-dimensional data analyses (4DDA; including global and regional reanalyses) for a specified period. In this context a number of carefully selected reference stations are linked closely with the existing network of observing sites involved in the GEWEX Continental Scale Experiments, which are distributed across the world. The initial step of CEOP is to develop a pilot global hydro-climatological dataset with global consistency under the climate variability that can be used to help validate satellite hydrology products and evaluate, develop and eventually predict water and energy cycle processes in global and regional models. Based on the dataset, we will address the studies on the inter-comparison and inter-connectivity of the monsoon systems and regional water and energy budget, and a path to down-scaling from the global climate to local water resources, as the second step.

  • PDF

Some issues on the downscaling of global climate simulations to regional scales

  • Jang, Suhyung;Hwang, Manha;Hur, Youngteck;Kavvas, M. Levent
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.229-229
    • /
    • 2015
  • Downscaling is a fundamental procedure in the assessment of the future climate change impact at regional and watershed scales. Hence, it is important to investigate the spatial variability of the climate conditions that are constructed by various downscaling methods in order to assess whether each method can model the climate conditions at various spatial scales properly. This study introduces a fundamental research from Jang and Kavvas(2015) that precipitation variability from a popular statistical downscaling method (BCSD) and a dynamical downscaling method (MM5) that is based on the NCAR/NCEP reanalysis data for a historical period and on the CCSM3 GCM A1B emission scenario simulations for a projection period, is investigated by means of some spatial characteristics: a) the normalized standard deviation (NSD), and b) the precipitation change over Northern California region. From the results of this study it is found that the BCSD method has limitations in projecting future precipitation values since the BCSD-projected precipitation, being based on the interpolated change factors from GCM projected precipitation, does not consider the interactions between GCM outputs and local geomorphological characteristics such as orographic effects and land use/cover patterns. As such, it is not clear whether the popular BCSD method is suitable for the assessment of the impact of future climate change at regional, watershed and local scales as the future climate will evolve in time and space as a nonlinear system with land-atmosphere feedbacks. However, it is noted that in this study only the BCSD procedure for the statistical downscaling method has been investigated, and the results by other statistical downscaling methods might be different.

  • PDF

기후변화로 인한 청미천유역의 기상학적 위협요인 규명 (Identification of Meteorological Threats by Climate Change in the Cheongmicheon Basin)

  • 이철응;김상욱
    • 산업기술연구
    • /
    • 제35권
    • /
    • pp.23-30
    • /
    • 2015
  • In recent, the various methods to predict the hydrological impacts due to climate change have been developed and applied. Especially, the variability of the meteorological factors such as rainfall, temperature, and evaporation can impact on the ecosystem in a basin. The variability caused by climate change on the meteorological factors can be divided by a gradual and abrupt change. Therefore, in this study, the gradual change is detected by simple linear regression and Mann-Kendall trend test. Also, the abrupt change is detected by Bayesian change point analysis. Finally, the result using these methods can identify the meteorological threats in the Cheongmicheon basin.

  • PDF

두 가지 형태의 엘니뇨 정의에 따른 한반도 기후 상관성 분석 (Relation between Climate Variability in Korea and Two Types of El Niño, and Their Sensitivity to Definition of Two Types of El Niño)

  • 김진수;국종성;예상욱;김현경;박이형
    • 대기
    • /
    • 제24권1호
    • /
    • pp.89-99
    • /
    • 2014
  • Recently, several studies pointed out that there are distinct two types of El Ni$\tilde{n}$o events based on the spatial pattern of SST. Since the two types of El Ni$\tilde{n}$o have different impacts on global climate, it is quite important to identify the type to assess and predict the regional climate variability. So far, however, there are still many different definitions to identify the two types of El Ni$\tilde{n}$o from the different studies. In this study, we investigated a sensitivity of the impacts on climate variability over the Korean Peninsula corresponding to the definition of two-types of El Ni$\tilde{n}$o. After checking pre-existing definitions and other possible definition, it is suggested here that two different definitions exhibit relatively strong relationship between El Ni$\tilde{n}$o events and the Korean climate variables when two types of El Ni$\tilde{n}$o are separated. In addition to the Korean climate, the two types of El Ni$\tilde{n}$o show quite distinct global teleconnection patterns when the definitions are used.

대규모 기후인자와 관련된 우리나라 봄철 산불위험도 변동 (Spring Forest-Fire Variability over Korea Associated with Large-Scale Climate Factors)

  • 정지윤;우성호;손락훈;윤진호;정지훈;이석준;이병두
    • 대기
    • /
    • 제28권4호
    • /
    • pp.457-467
    • /
    • 2018
  • This study investigated the variability of spring (March-May) forest fire risk in Korea for the period 1991~2017 and analyzed its relationship with large-scale climate factors. The Forest Weather Index (FWI) representing the meteorological risk for forest fire occurrences calculated based on observational data and its relationship with large-scale climate factors were analyzed. We performed the empirical orthogonal function (EOF) analysis on the spring FWI. The leading EOF mode of FWI accounting for about 70% of total variability was found to be highly correlated with total number of forest fire occurrences in Korea. The high FWI, forest fire occurrence risk, in Korea, is associated with warmer atmosphere temperature in midwest Eurasia-China-Korea peninsula, cyclonic circulation anomaly in northeastern China-Korea peninsula-northwest pacific, westerly wind anomaly in central China-Korea peninsula, and low humidity in Korea. These are further related with warmer sea surface temperature and enhanced outgoing longwave radiation over Western Pacific, which represents a typical condition for a La $Ni\tilde{n}a$ episode. This suggests that large-scale climate factors over East Asia and ENSO could have a significant influence on the occurrence of spring forest fires in Korea.

남한지역 일단위 강우량 공간상세화를 위한 BCSA 기법 적용성 검토 (Application of Bias-Correction and Stochastic Analogue Method (BCSA) to Statistically Downscale Daily Precipitation over South Korea)

  • 황세운;정임국;김시호;조재필
    • 한국농공학회논문집
    • /
    • 제63권6호
    • /
    • pp.49-60
    • /
    • 2021
  • BCSA (Bias-Correction and Stochastic Analog) is a statistical downscaling technique designed to effectively correct the systematic errors of GCM (General Circulation Model) output and reproduce basic statistics and spatial variability of the observed precipitation filed. In this study, the applicability of BCSA was evaluated using the ASOS observation data over South Korea, which belongs to the monsoon climatic zone with large spatial variability of rainfall and different rainfall characteristics. The results presented the reproducibility of temporal and spatial variability of daily precipitation in various manners. As a result of comparing the spatial correlation with the observation data, it was found that the reproducibility of various climate indices including the average spatial correlation (variability) of rainfall events in South Korea was superior to the raw GCM output. In addition, the needs of future related studies to improve BCSA, such as supplementing algorithms to reduce calculation time, enhancing reproducibility of temporal rainfall patterns, and evaluating applicability to other meteorological factors, were pointed out. The results of this study can be used as the logical background for applying BCSA for reproducing spatial details of the rainfall characteristic over the Korean Peninsula.