• Title/Summary/Keyword: Climate Energy

Search Result 1,587, Processing Time 0.03 seconds

A Study about Water Footprint Evaluation of Industrial Sectors (국내 산업들의 물 발자국 산정에 관한 연구)

  • Kim, Junbeum;Kang, Hun;Park, Kihak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.400-406
    • /
    • 2013
  • Water footprint means the direct and indirect water resource amount used for the life cycle of different goods, services and industries. In this study, the direct and indirect water resource consumption in industrial sectors were calculated by using water footprint evaluation method. As a result, agriculture and marine product industry takes part of 93% of whole water resource amount, showing the greatest amount of basic unit of water coefficient (637 $m^3/won$) following by petroleum and cool products industry of about 13 $m^3/won$. In the agriculture and marine product industry, the direct water consumption was only 25 billion $m^3$ compared to the indirect water, which is 130 billion $m^3$. The next highest industry was chemical product industry, which consists of 2 billion $m^3$ of the direct water and 4.5 billion $m^3$ of the indirect water consumption. In case of industries which have high direct water, it would be more effective to reduce amount of water related to the industry than to reduce water in actual process. This water footprint of each industry and evaluation method will be useful tool and method for development of national water management policy and regulation.

Mesocosm as a Scientific Tool for Marine Science: Focused on the Soft-bottom Environment (해양과학에서 mesocosm의 적용 사례 연구: 연성저질환경연구를 위한 도구)

  • Yang, Jae-Sam;Jeong, Yong-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.93-106
    • /
    • 2011
  • This review has dealt with definition, size, history, and status of mesocosm, and also discussed several problems and trouble shootings related to the building of mesocosm, and finally will suggest the future directions of this scientific tool. Due to the restriction of the space, the discussion mainly focused on "the mesocosm building for the soft-bottom ecosystem". The mesocosm is defined as "medium-sized, self-sustaining, and man-controllable ecosystem". This type of studies has already initiated since 1960, but nowadays it expands to the diverse fields of science and technologies, such as toxicology, limnology, environmental sciences and engineering, and even geochemistry. As a scientific tool, the mesocosm requires following aspects; replicability, repeatability, and ecological realism or accuracy. Several technical problems have to be solved for the perfect building of mesocosm. They are known as scaling, composition of seawater/sediment, light intensity, turbulence, hydraulic residence time, and top predator. These trouble shootings are provided at the discussion in detail. In the context, I expect two promising directions in the future; 1. Objectivity based on the diverse statistical methodologies, 2. "Living ecosystem modelling" coordinated with the mathematical modelling. With these, the mesocosm will be more powerful tool for the scientists and engineers to investigate the chemical and the ecological responses to the toxic materials and global climate changes.

Air Pollution Trends in Japan between 1970 and 2012 and Impact of Urban Air Pollution Countermeasures

  • Wakamatsu, Shinji;Morikawa, Tazuko;Ito, Akiyoshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.177-190
    • /
    • 2013
  • Air pollution trends in Japan between 1970 and 2012 were analyzed, and the impact of air pollution countermeasures was evaluated. Concentrations of CO decreased from 1970 to 2012, and in 2012, the Japanese environmental quality standard (EQS) for CO was satisfied. Concentrations of $SO_2$ dropped markedly in the 1970s, owing to use of desulfurization technologies and low-sulfur heavy oil. Major reductions in the sulfur content of diesel fuel in the 1990s resulted in further decreases of $SO_2$ levels. In 2012, the EQS for $SO_2$ was satisfied at most air quality monitoring stations. Concentrations of $NO_2$ decreased from 1970 to 1985, but increased from 1985 to 1995. After 1995, $NO_2$ concentrations decreased, especially after 2006. In 2012, the EQS for $NO_2$ was satisfied at most air quality monitoring stations, except those alongside roads. The annual mean for the daily maximum concentrations of photochemical oxidants (OX) increased from 1980 to 2010, but after 2006, the $98^{th}$ percentile values of the OX concentrations decreased. In 2012, the EQS for OX was not satisfied at most air quality monitoring stations. Non-methane hydrocarbon (NMHC) concentrations generally decreased from 1976 to 2012. In 2011, NMHC concentrations near roads and in the general environment were nearly the same. The concentration of suspended particulate matter (SPM) generally decreased. In 2011, the EQS for SPM was satisfied at 69.2% of ambient air monitoring stations, and 72.9% of roadside air-monitoring stations. Impacts from mineral dust from continental Asia were especially pronounced in the western part of Japan in spring, and year-round variation was large. The concentration of $PM_{2.5}$ generally decreased, but the EQS for $PM_{2.5}$ is still not satisfied. The air pollution trends were closely synchronized with promulgation of regulations designed to limit pollutant emissions. Trans-boundary OX and $PM_{2.5}$ has become a big issue which contains global warming chemical species such as ozone and black carbon (so called SLCP: Short Lived Climate Pollutants). Cobeneficial reduction approach for these pollutants will be important to improve both in regional and global atmospheric environmental conditions.

Evaluation of the Radiant Heat Effects according to the Change of Wind Velocity in Forest Fire by using WFDS (WFDS를 이용한 풍속에 따른 산림화재 복사열 강도 평가)

  • Song, Dong-Woo;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • The wildland fire intensity and scale are getting bigger owing to climate change in the world. In the case of domestic, the forest is distributed over approximately 63.7 % of country and the main facilities like a industrial facility or gas facility abuts onto it. Therefore there is potential that the wildland fire is developed to a large-scale disaster. In this study, the effect distances of the radiant heat flux from the crown fire are analysed according to the change of wind velocity. The safety criteria concerning the radiant heat flux to influence on the surrounding were researched to analyse the effect distances. The criteria of radiant heat flux were chosen $5kW/m^2$, $12.5kW/m^2$, $37.5kW/m^2$. WFDS, which is an extension of NIST's Fire Dynamics Simulator, was used to consequence analysis of the forest fire. In order to apply the analysis conditions, it is researched the forest conditions that is generally distributed in domestic region. As the result, the maximum effect distances by radiant heat were showed at the horizontal and vertical direction. When the wind velocity varied from 0 to 10 m/s, the maximum effect distance increased as the wind velocity increases. Interesting point is that the maximum effect distance were shown at the wind velocity of 8 m/s. The maximum effect distance was decreased according as the fuel moisture of trees increase. This study can contribute to analyse quantitative risk about the damage effect of the surrounding facilities caused by wildland fire.

Characteristics of Greenhouse Gas Emissions with Different Combination Rates of Activated Rice Hull Biochar during Aerobic Digestion of Cow Manure (왕겨 활성 바이오차 혼합 비율에 따른 우분 호기소화 시 온실가스 발생 특성)

  • Ro, YeonHee;Chung, WooJin;Chung, SeokJoo;Jung, InHo;Na, HongSik;Kim, MinSoo;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.222-227
    • /
    • 2020
  • BACKGROUND: Among the biomass conversion techniques of livestock manure, composting process is a method of decomposing organic matter through microorganisms, and converting it into fertilizer in soil. The aerobic composting process is capable of treating cow manure in large quantities, and produces greenhouse gas as CO2 and N2O, although it has economical benefit. By using the activated rice hull biochar, which is a porous material, it was intended to mitigate the greenhouse gas emissions, and to produce the compost of which quality was high. Objective of this experiment was to estimate CO2 and N2O emissions through composting process of cow manure with different cooperated biochar contents. METHODS AND RESULTS: The treatments of activated rice hull biochar were set at 0%, 5%, 10% and 15%, respectively, during composting cow manure. The CO2 emission in the control was 534.7 L kg-1, but was 385.5 L kg-1 at 15% activated rice hull biochar. Reduction efficiency of CO2 emission was estimated to be 28%. N2O emission was 0.28 L kg-1 in the control, but was 0.03 L min-1 at 15% of activated rice hull biochar, estimating about 89% reduction efficiency. CONCLUSION: Greenhouse gas emissions during the composting process of cow manure can be reduced by mixing with 15% of activated rice hull biochar for eco-friendly compost production.

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.

A Study on the Policy of New Government Science and Technology and the R&D Policy of Government Departments Related to Geoscience and Mineral Resources (신정부 과학기술 및 지질자원 관련 정부부처 R&D정책 분석)

  • Ahn, Eun-Young;Bae, Jun-Hee;Lee, Ok-Sun;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.279-289
    • /
    • 2018
  • With the launch of the new government in 2017, National Planning and Advisory Committee (NPAC) announced the five-year plan for the government administration and the 100 national tasks. The Ministry of Science and ICT (Information & Communication Technology) (MSIT) and other government agencies issued work plans for 2018, including R&D plans. Analyzing the changes in government policy will be a major task of public research and development institutions. This study analyzed the changes of the R&D policy of the new government and the R&D policy direction and strategic plan of the government departments related to the geoscience and mineral resources in 2018. The results of the analysis are as follows: 1) to lead the innovation growth through the 4th industrial revolution, 2) to supply clean energy and to cope with climate change in the environment and energy field, 3) to improve the quality of life through problem solving in the life of the people and disaster prevention. Considering the investment direction of the government, it is necessary to lead the geoscience and mineral resources R&D to solve problems of the society and to grow by the science and technology.

Validation of Net Radiation Measured from Fluxtower Based on Eddy Covariance Method: Case Study in Seolmacheon and Cheongmicheon Watersheds (에디공분산 방법 기반의 플럭스 타워 순 복사에너지 검증: 설마천, 청미천 유역)

  • Byun, Kyuhyun;Shin, Jiyae;Lee, Yeon-Kil;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.111-122
    • /
    • 2013
  • The necessity of clear understanding of water and energy cycles has been attracted recently due to the climate change. The micrometeorological flux tower networks play a role of cornerstone of the hydrological and ecological analyses. Although the eddy covariance techniques used for flux tower have been proven to be applicable for estimation of latent heat flux, the raw data are often underestimated and needs to be corrected. Among several methods, the Bowen ratio is recognized as the most useful method in which the net radiation and other flux data (Ground heat flux, Sensible heat flux) are used and needed to be validated. In this study, in order to validate the net radiation from flux tower in Seolmacheon and Cheongmicheon watersheds, we compare it with two version of calculated net radiation: (1) FAO 56 Daily net radiation proposed by Allen et al. (1998). (2) Instantaneous net radiation proposed by Bastiaanssen (1995). The results showed that the net radiation from the flux data had similar tendency with those calculated based on physical theory. In addition, after it was applied to Bowen ratio method, the corrected latent heat flux was considerably improved with making the energy balance much more closed.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Characteristics and long term variation trend of water mass in the coastal part of East Sea, Korea (동해연안 수괴의 특성과 장기변동 추이)

  • Yoon, Yi-Yong;Jung, So-Jung;Yoon, Sang-Chul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.1
    • /
    • pp.59-65
    • /
    • 2007
  • Rapid variation of coastal ecosystem in the East Sea of Korea, such as fishery resource variation and subtropical chang of bentic flora, accordong to the global warming are actually noticed. In this study we try to identify the characterics of water mass existing in this coastal area and to consider the variation of their physical and chemical properties using data of temperature, salinity and dissolved oxygen obtained by National Fisheries Research & Development Institute from 1960 to 2005. The temperature of all water mass rise during last 45 years; the rise of North Korea Cold Water temperature (about $2.33^{\circ}C$) is 1.5 times higher than that of Tsushima warm water (about $1.6^{\circ}C$), and the temperature rise of Tsushima Surface Water, directly affected by climate chang is $2.57^{\circ}C$, higher than the atmospheric temperature rise during same period, indicating that subtropical change makes progress more rapidly in the coastal marine ecosystem than in the land ecosystem. Otherwise, the salinity in the surface water decrease $0.29\%_{\circ}$ during last 45 years due to the rising trend of rainfall with atmospheric temperature. The dissolved oxygen concentration in the all water mass make a decreasing trend. Specially for the North Korea Cold Water, the dissolved oxygen concentration diminish 0.021 mg/l per year and the decrease in the East Sea Proper Water indicate a change of inner water circulation system.

  • PDF