• Title/Summary/Keyword: Climate Change Assessment

Search Result 1,011, Processing Time 0.03 seconds

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Suggestion of User-Centered Climate Service Framework and Development of User Interface Platform for Climate Change Adaptation (기후변화 적응을 위한 사용자 중심의 기후서비스체계 제안 및 사용자인터페이스 플랫폼 개발)

  • Cho, Jaepil;Jung, Imgook;Cho, Wonil;Lee, Eun-Jeong;Kang, Daein;Lee, Junhyuk
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • There is an emphasis on the importance of adaptation against to climate change and related natural disasters. As a result, various climate information with different time-scale can be used for science-based climate change adaptation policy. From the aspects of Global Framework for Climate Services (GFCS), various time-scaled climate information in Korea is mainly produced by Korea Meteorological Administration (KMA) However, application of weather and climate information in different application sectors has been done individually in the fields of agriculture and water resources mostly based-on weather information. Furthermore, utilization of climate information including seasonal forecast and climate change projections are insufficient. Therefore, establishment of the Cooperation Center for Application of Weather and Climate Information is necessary as an institutional platform for the UIP (User Interface Platform) focusing on multi-model ensemble (MME) based climate service, seamless climate service, and climate service based on multidisciplinary approach. In addition, APCC Integrated Modeling Solution (AIMS) was developed as a technical platform for UIP focusing on user-centered downscaling of various time-scaled climate information, application of downscaled data into impact assessment modeling in various sectors, and finally producing information can be used in decision making procedures. AIMS is expected to be helpful for the increase of adaptation capacity against climate change in developing countries and Korea through the voluntary participation of producer and user groups within in the institutional and technical platform suggested.

Uncertainty in Regional Climate Change Impact Assessment using Bias-Correction Technique for Future Climate Scenarios (미래 기상 시나리오에 대한 편의 보정 방법에 따른 지역 기후변화 영향 평가의 불확실성)

  • Hwang, Syewoon;Her, Young Gu;Chang, Seungwoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.95-106
    • /
    • 2013
  • It is now generally known that dynamical climate modeling outputs include systematic biases in reproducing the properties of atmospheric variables such as, preciptation and temerature. There is thus, general consensus among the researchers about the need of bias-correction process prior to using climate model results especially for hydrologic applications. Among the number of bias-correction methods, distribution (e.g., cumulative distribution fuction, CDF) mapping based approach has been evaluated as one of the skillful techniques. This study investigates the uncertainty of using various CDF mapping-based methods for bias-correciton in assessing regional climate change Impacts. Two different dynamicailly-downscaled Global Circulation Model results (CCSM and GFDL under ARES4 A2 scenario) using Regional Spectial Model for retrospective peiod (1969-2000) and future period (2039-2069) were collected over the west central Florida. Total 12 possible methods (i.e., 3 for developing distribution by each of 4 for estimating biases in future projections) were examined and the variations among the results using different methods were evaluated in various ways. The results for daily temperature showed that while mean and standard deviation of Tmax and Tmin has relatively small variation among the bias-correction methods, monthly maximum values showed as significant variation (~2'C) as the mean differences between the retrospective simulations and future projections. The accuracy of raw preciptiation predictions was much worse than temerature and bias-corrected results appreared to be more significantly influenced by the methodologies. Furthermore the uncertainty of bias-correction was found to be relevant to the performance of climate model (i.e., CCSM results which showed relatively worse accuracy showed larger variation among the bias-correction methods). Concludingly bias-correction methodology is an important sourse of uncertainty among other processes that may be required for cliamte change impact assessment. This study underscores the need to carefully select a bias-correction method and that the approach for any given analysis should depend on the research question being asked.

Methodology of CO2 Emission Factor Verification and Quantitative Assessment in Ethylene Product Processes (에틸렌 생산에서의 CO2 국가배출계수 검증 및 정량평가 방법론)

  • Youk, Soo Kyung;Jeon, Eui-Chan;Yoo, Kyung Seun
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.69-74
    • /
    • 2018
  • The purpose of this study is to suggest the methodology of $CO_2$ Emission Factor Verification and Quantitative Assessment in Ethylene Product Processes. At first, this study compare the IPCC (Intergovernmental Panel on Climate Change) 1996 Guideline and 2006 Guideline. And analyse methodology for estimating $CO_2$ emission and $CO_2$ emission factor in Ethylene product process. Also analyse cases of estimating $CO_2$ emission factor based on material balance. Methodology of $CO_2$ Emission Factor Verification and Quantitative Assessment are following the categories proposed by GIR (Greenhouse Gas Inventory and Research Center). There are total 12 factors in 8 categories and give 5 or 10 points according to their importance. Also this study suggests necessary data of document to meet the conditions. The result would help estimate accuracy Greenhouse Gas Inventory. Also contribute to establish policy on environmental assessment, air conservation, etc.

Korean Flood Vulnerability Assessment on Climate Change (기후변화에 따른 국내 홍수 취약성 평가)

  • Lee, Moon-Hwan;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.653-666
    • /
    • 2011
  • The purposes of this study are to suggest flood vulnerability assessment method on climate change with evaluation of this method over the 5 river basins and to present the uncertainty range of assessment using multi-model ensemble scenarios. In this study, the data related to past historical flood events were collected and flood vulnerability index was calculated. The vulnerability assessment were also performed under current climate system. For future climate change scenario, the 39 climate scenarios are obtained from 3 different emission scenarios and 13 GCMs provided by IPCC DDC and 312 hydrology scenarios from 3 hydrological models and 2~3 potential evapotranspiration computation methods for the climate scenarios. Finally, the spatial and temporal changes of flood vulnerability and the range of uncertainty were performed for future S1 (2010~2039), S2 (2040~2069), S3 (2070~2099) period compared to reference S0 (1971~2000) period. The results of this study shows that vulnerable region's were Han and Sumjin, Youngsan river basins under current climate system. Considering the climate scenarios, variability in Nakdong, Gum and Han river basins are large, but Sumjin river basin had little variability due to low basic-stream ability to adaptation.

Development Strategy for New Climate Change Scenarios based on RCP (온실가스 시나리오 RCP에 대한 새로운 기후변화 시나리오 개발 전략)

  • Baek, Hee-Jeong;Cho, ChunHo;Kwon, Won-Tae;Kim, Seong-Kyoun;Cho, Joo-Young;Kim, Yeongsin
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.55-68
    • /
    • 2011
  • The Intergovernmental Panel on Climate Change(IPCC) has identified the causes of climate change and come up with measures to address it at the global level. Its key component of the work involves developing and assessing future climate change scenarios. The IPCC Expert Meeting in September 2007 identified a new greenhouse gas concentration scenario "Representative Concentration Pathway(RCP)" and established the framework and development schedules for Climate Modeling (CM), Integrated Assessment Modeling(IAM), Impact Adaptation Vulnerability(IAV) community for the fifth IPCC Assessment Reports while 130 researchers and users took part in. The CM community at the IPCC Expert Meeting in September 2008, agreed on a new set of coordinated climate model experiments, the phase five of the Coupled Model Intercomparison Project(CMIP5), which consists of more than 30 standardized experiment protocols for the shortterm and long-term time scales, in order to enhance understanding on climate change for the IPCC AR5 and to develop climate change scenarios and to address major issues raised at the IPCC AR4. Since early 2009, fourteen countries including the Korea have been carrying out CMIP5-related projects. Withe increasing interest on climate change, in 2009 the COdinated Regional Downscaling EXperiment(CORDEX) has been launched to generate regional and local level information on climate change. The National Institute of Meteorological Research(NIMR) under the Korea Meteorological Administration (KMA) has contributed to the IPCC AR4 by developing climate change scenarios based on IPCC SRES using ECHO-G and embarked on crafting national scenarios for climate change as well as RCP-based global ones by engaging in international projects such as CMIP5 and CORDEX. NIMR/KMA will make a contribution to drawing the IPCC AR5 and will develop national climate change scenarios reflecting geographical factors, local climate characteristics and user needs and provide them to national IAV and IAM communites to assess future regional climate impacts and take action.

Case Study on the Life Cycle Assessment of the Packaged Bean-curd in Food Industry (식품산업에 있어서 포장두부의 전과정평가 사례연구)

  • Hwang, Tae-Yeon;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.3
    • /
    • pp.277-290
    • /
    • 2007
  • This study has been analyzed an execution example of the life cycle assessment on the packaged bean-curd of P company, the first case of the regular life cycle assessment on the processed foods in Korea and considered on the significance and directions of the life cycle assessment on the foods. It is possible to divide the potential environmental impact through the life cycle of the bean-curd into six categories and analyze the environmental impact on the production, use and disposal phases of the product. The values of each environmental impact have been quantified from the strength of the potential impact fur the corresponding category of impact. In the future, it is expected that the result of the lift cycle assessment will be increasingly used fur many areas such as Climate Change Convention and ISO22000, etc. and it is required to promote a project to make database through the assessment on the individual corps or types of businesses for it from now on.

  • PDF

Examination of the Optimal Insulation Thickness of Exterior Walls for Climate Change (기후변화를 고려한 외벽 최적단열두께 검토)

  • Jung, Jae-Hoon
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.81-86
    • /
    • 2011
  • By strengthening the insulation performance of a building, a great deal of energy can be saved and a comfortable indoor environment can be offered to people. On the other hand, the climate, which has a great influence on the indoor environment, is changed by global warming. Therefore, in planning building envelope structure and design, climate change should be considered. In this paper, the optimal insulation thickness of exterior walls was calculated by an economic assessment method using heating degree-days. Additionally, how much influence climate change has on planning building insulation was investigated. The examination showed that heating degree-days have decreased by about 10% due to climate change in the past few decades. It was also shown that the optimal insulation thickness of exterior walls was thin, at about 6%, in three representative Korean cities (Seoul, Daejeon, Jeju).

Assessment of climate change impacts on earthdamreservoirsinVietnam

  • Tung, H.T.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.189-189
    • /
    • 2017
  • Climate changes have impacted to many sectors including water resources in Vietnam. Vietnam is agricultural development country having more than 6,000 earth dam reservoirs. These reservoirs play a very important role in flow regulation for water supply to economic sectors. In the context of undesirable impacts of climate change such as increasing temparature, evaporation, and changing rainfall and rainfall pattern, water demands and inflow to reservoirs also are being influenced. This leads to changes of resevoir exploitation effects that needs to be assessed for adaptation solutions. This article summarizes evaluations on climate change impacts to 16 reservoirs in 4 regions of North-West, North-East, Central Part, and Central Highland of Vietnam. Research results showed that in the context of climate change, safety of these reservoirs will be decreased from 8% to 20% in both water supply and flood control capacity.

  • PDF