• Title/Summary/Keyword: Climate Big data

Search Result 125, Processing Time 0.024 seconds

An Efficient Damage Information Extraction from Government Disaster Reports

  • Shin, Sungho;Hong, Seungkyun;Song, Sa-Kwang
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.55-63
    • /
    • 2017
  • One of the purposes of Information Technology (IT) is to support human response to natural and social problems such as natural disasters and spread of disease, and to improve the quality of human life. Recent climate change has happened worldwide, natural disasters threaten the quality of life, and human safety is no longer guaranteed. IT must be able to support tasks related to disaster response, and more importantly, it should be used to predict and minimize future damage. In South Korea, the data related to the damage is checked out by each local government and then federal government aggregates it. This data is included in disaster reports that the federal government discloses by disaster case, but it is difficult to obtain raw data of the damage even for research purposes. In order to obtain data, information extraction may be applied to disaster reports. In the field of information extraction, most of the extraction targets are web documents, commercial reports, SNS text, and so on. There is little research on information extraction for government disaster reports. They are mostly text, but the structure of each sentence is very different from that of news articles and commercial reports. The features of the government disaster report should be carefully considered. In this paper, information extraction method for South Korea government reports in the word format is presented. This method is based on patterns and dictionaries and provides some additional ideas for tokenizing the damage representation of the text. The experiment result is F1 score of 80.2 on the test set. This is close to cutting-edge information extraction performance before applying the recent deep learning algorithms.

Risk Communication Networks in South Korea: The Case of the 2017 Gangneung Wildfire

  • Oh, Jeongmin;Jung, Kyujin;Song, Minsun
    • Journal of Contemporary Eastern Asia
    • /
    • v.20 no.2
    • /
    • pp.85-107
    • /
    • 2021
  • Wildfires have become increasingly common and intense in South Korea because of climate change, but few have recognized the catastrophic level of the problem. Given the significant impact of wildfires, emergency management stakeholders must have effective risk communication structures for rapidly responding to such phenomena and overcoming geographical difficulties. Despite the country spending billions of dollars to build a big databased early warning system, risk communication flow during the 2017 Gangneung wildfire was ineffective, thereby causing substantial economic, social, and environmental losses. To examine the patterns of information exchange in South Korea's risk communication networks and their structural characteristics during the wildfire, we conducted semantic and network analyses of real-time data collected from social media. The results showed that the inefficient flow of risk information prevented emergency responders from adequately assessing the emergency and protecting the population. This study provides new insights into effective risk communication responses to catastrophic events and methods of research on webometric approaches to emergency management.

The Design of A HPC based System For Responding Complex Disaster (복합재난 대응을 위한 HPC 기반 시스템 설계)

  • Kang, Kyung-woo;Kang, Yun-hee
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.49-58
    • /
    • 2018
  • Complex disasters make greater damage and higher losses unexpected than the past. To prevent these disasters, it needs to prepare a plan for handling unexpected results. Especially an accident at a facility like an atomic power plant makes a big problem cause of climate change. A simulation needs to do preliminary researches based on diverse situations. In this research we define the basic component techniques to design and implement the disaster management system. Basically a hierarchical system design method is to build on the resources provided from high performance computing(HPC) and large-scale storage systems. To develop the system, it is considered middleware as well as application studies, data studies and decision making services in convergence areas.

A study on Performance Evaluation for Network Architecture using Quantum Key Distribution Technology (양자암호기반의 통신망 구축 및 성능시험 검증연구)

  • Lee, Wonhyuk;Seok, Woojin;Park, Chanjin;Kwon, Woochang;Sohn, Ilkwon;Kim, Seunghae;Park, Byoungyoen
    • KNOM Review
    • /
    • v.22 no.2
    • /
    • pp.39-47
    • /
    • 2019
  • There are several big data-driven advanced research activities such as meteorological climate information, high energy physics, astronomy research, satellite information data, and genomic research data on KREONET. Since the performance degradation occurs in the environment with the existing network security equipment, methods for preventing the performance degradation on the high-performance research-only network and for high-speed research collaboration are being studied. In addition, the recent issue of quantum computers has been a threat to security using the existing encryption system. In this paper, we construct quantum cryptography-based communication network through environment construction and high-performance transmission test that build physical security through quantum cryptography-based communication network in end-to-end high-speed research network. The purpose of this study is to analyze the effect on network performance when performing physical encryption and to use it as basic data for constructing high-performance research collaboration network.

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.

The effect of climate change on hydroelectric power generation of multipurpose dams according to SSP scenarios (SSP 시나리오에 따른 기후변화가 다목적댐 수력발전량에 미치는 영향 분석)

  • Wang, Sizhe;Kim, Jiyoung;Kim, Yongchan;Kim, Dongkyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.481-491
    • /
    • 2024
  • Recent droughts make hydroelectric power generation (HPG) decreasing. Due to climate change in the future, the frequency and intensity of drought are expected to increase, which will increase uncertainty of HPG in multi-purpose dams. Therefore, it is necessary to estimate the amount of HPG according to climate change scenarios and analyze the effect of drought on the amount of HPG. This study analyzed the future HPG of the Soyanggang Dam and Chungju Dam according to the SSP2-4.5 and SSP5-8.5 scenarios. Regression equations for HPG were developed based on the observed data of power generation discharge and HPG in the past provided by My Water, and future HPGs were estimated according to the SSP scenarios. The effect of drought on the amount of HPG was investigated based on the drought severity calculated using the standardized precipitation index (SPI). In this study, the future SPIs were calculated using precipitation data based on four GCM models (CanESM5, ACCESS-ESM1-5, INM-CM4-8, IPSL-CM6A) provided through the environmental big data platform. Overall results show that climate change had significant effects on the amount of HPG. In the case of Soyanggang Dam, the amount of HPG decreased in the SSP2-4.5 and SSP5-8.5 scenarios. Under the SSP2-4.5 scenario the CanESM model showed a 65% reduction in 2031, and under the SSP5-8.5 scenario the ACCESS-ESM1-5 model showed a 54% reduction in 2029. In the case of Chungju Dam, under the SSP2-4.5 and SSP5-8.5 scenarios the average monthly HPG compared to the reference period showed a decreasing trend except for INM-CM4 model.

A Study on the Relationship between Class Similarity and the Performance of Hierarchical Classification Method in a Text Document Classification Problem (텍스트 문서 분류에서 범주간 유사도와 계층적 분류 방법의 성과 관계 연구)

  • Jang, Soojung;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.77-93
    • /
    • 2020
  • The literature has reported that hierarchical classification methods generally outperform the flat classification methods for a multi-class document classification problem. Unlike the literature that has constructed a class hierarchy, this paper evaluates the performance of hierarchical and flat classification methods under a situation where the class hierarchy is predefined. We conducted numerical evaluations for two data sets; research papers on climate change adaptation technologies in water sector and 20NewsGroup open data set. The evaluation results show that the hierarchical classification method outperforms the flat classification methods under a certain condition, which differs from the literature. The performance of hierarchical classification method over flat classification method depends on class similarities at levels in the class structure. More importantly, the hierarchical classification method works better when the upper level similarity is less that the lower level similarity.

Analysis of Energy Consumption Characteristics of Education Facilities in Korea (국내 초·중등 교육시설의 에너지 소비 특성 분석)

  • Lee, Jae-Ho;Hyun, In-Tak;Yoon, Yeo-Beom;Lee, Kwang Ho;Chin, Kyung Il
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.59-65
    • /
    • 2014
  • Nowadays, reduction of energy use in buildings is a big issue, especially in public buildings like schools. The building structure is very simple in that, the room size, schedule and user number is similar across different schools. There are many policies which are suitable for this kind of buildings. Investigation of energy consumption pattern in primary school, middle school and high school in different cities of Korea has been done in this paper using statistical data from national organization and the data from IBM and Gyeonggi Provincial Office of Education, aimed at providing the basic data for the development of energy efficiency improvement policies of educational facilities. The study was divided according to climate, energy source type and public or private school, as different cities have different climates and accordingly different amount of energy sources are used. It was observed that, the average energy consumption in primary school is $36.9kWh/m^2$, in middle school is $20.5kWh/m^2$ and in high school $27.4kWh/m^2$. As further analysis, monthly energy consumption pattern has been analyzed for one city.

Exploring Convergence R & D area via Data-driven Tech mining: The case of landslide prevention technology linked to ICT (데이터 기반 테크마이닝(tech-mining)을 통한 융합 R&D 영역 탐색: ICT 기반 산사태 예방 기술 사례를 중심으로)

  • Choi, Jaekyung;Seo, Seongho;Kang, Jongseok;Chung, Hyunsang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.483-490
    • /
    • 2019
  • Due to the high complexity and diversity of the problems of the future society, it is getting harder to solve with the traditional single technology. In recent years, there has been a growing interest in convergence technology, which combines or connects different types of technologies to create new technologies and industries. In this study, we explored the convergence R&D area of ICT technology related to landslide prevention/response. It is true that the world has been exposed to various disasters due to recent climate change. As a result, there is a tendency to use Big Data and ICT for disaster preparedness and recovery. Especially, in the case of landslides, it is a natural disaster that requires research not only to study actual landslides but also to predict potential landslides. Therefore, in this study, we analyzed what kind of convergence R&D is being carried out in the field of ICT for preventing and responding to landslide. Therefore, in this study, Web of Science article data were analyzed by using the scientometric analysis and 51 landslide-related ICT convergence R&D areas were derived.

OrdinalEncoder based DNN for Natural Gas Leak Prediction (천연가스 누출 예측을 위한 OrdinalEncoder 기반 DNN)

  • Khongorzul, Dashdondov;Lee, Sang-Mu;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.7-13
    • /
    • 2019
  • The natural gas (NG), mostly methane leaks into the air, it is a big problem for the climate. detected NG leaks under U.S. city streets and collected data. In this paper, we introduced a Deep Neural Network (DNN) classification of prediction for a level of NS leak. The proposed method is OrdinalEncoder(OE) based K-means clustering and Multilayer Perceptron(MLP) for predicting NG leak. The 15 features are the input neurons and the using backpropagation. In this paper, we propose the OE method for labeling target data using k-means clustering and compared normalization methods performance for NG leak prediction. There five normalization methods used. We have shown that our proposed OE based MLP method is accuracy 97.7%, F1-score 96.4%, which is relatively higher than the other methods. The system has implemented SPSS and Python, including its performance, is tested on real open data.