• Title/Summary/Keyword: Climate Assessment

Search Result 1,301, Processing Time 0.03 seconds

A Study on the Establishment of Quantitative Standards of Landslides Vulnerability by Climate Change (기후변화에 따른 산사태 취약성의 정량적 평가기준 설정 연구)

  • Lee, Dong-Kun;Kim, Hogul;Seo, Changwan;Song, Changkeun;Yu, Jeong Ah;Park, Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.95-104
    • /
    • 2013
  • Average cumulative precipitation in summer have increased by 350 mm compared with 1980s. As precipitation is expected to increase, the risk of landslides by heavy rainfall also is expected to rise. Therefore, establishment of adaptation plan for landslides is urgently needed. In 2011, Korea Ministry of Environment(KME) conducted vulnerability assessment to support establishment of adaptation plan for local governments. However, the result of vulnerability assessment had three limitations. First, KME didn't use standard scenario of Korea Meteorological Administration(KMA). Second, They conducted same standardization method for all variables. Third, They derived relative vulnerability which is not quantitative. The purpose of this study is to improve the limitations of existing vulnerability assessment and identify quantitative criteria to ensure scientific reliability. To achieve this purpose, we carried out three ways of advancement. First, application of new climate scenario, which is RCP 8.5 from KMA. Second, improvement of variables of vulnerability assessment. Third, derivation of quantitative criteria of vulnerability. The findings can support establishment of adaptation plan for local governments more effectively.

A Study on Categorizing Ecosystem Groups for Climate Change Risk Assessment - Focused on Applicability of Land Cover Classification - (기후변화 리스크 평가를 위한 생태계 유형분류 방안 검토 - 국내 토지피복분류 적용성을 중심으로 -)

  • Yeo, Inae;Bae, Haejin;Hong, Seungbum
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.385-403
    • /
    • 2017
  • This study showed the national ecosystem classification for the spatial standards of ecosystems-based approaches to the risk assessments and adaptation plan. The characteristics of climate change risk assessment, implement national adaptation plans, and ecosystem/habitat classification status was evaluated. Focusing on the land cover classification widely utilized as spatial data for the assessments of biodiversity and ecosystem services in the UK and other countries in Europe, the applicability of the national land cover classification for climate change risk assessments was reviewed. Considering the ecosystem classification for climate change risk assessment and establishing adaptation measures, it is difficult to apply rough classification method to the land cover system because of lack of information on habitat trend by categorization. The results indicated that forest ecosystems and agro-ecosystem occupied 62.3% and 25.0% of land cover, respectively, of the entire country. Although the area is small compared with the land area, wetland ecosystem (2.9%), marine ecosystem (0.4%), coastal ecosystem (0.6%), and urban ecosystem (6.1%) can be included in the risk assessments. Therefore, it is necessary to subdivide below the medium classification for the forest and agricultural land, as well as Inland wetland, which has a higher proportion of habitat preference of taxa than land area, marine/coastal habitat, and transition areas such as urban and natural ecosystem.

A Study of Improvement on Estimation Methodology of Carbon Storage amount by Damaged Trees for Environmental Impact Assessment (환경영향평가 온실가스 항목 내 훼손수목의 탄소저장량 평가 개선을 위한 제언)

  • Heon Mo Jeong;Hae Ran Kim;Dukyeop Kim;Inyoung Jang;Sung-Ryong Kang
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.330-340
    • /
    • 2022
  • We deduced the proper estimation methodology for the amount of carbon sequestration by damaged trees for Environmental Impact Assessment (EIA). The nine development projects related to renewable energy, damaged trees occur, assessment status and used method of evaluating the carbon storage of damaged trees were summarized. And after re-calculating the carbon storage of damaged trees through allometric equations, the difference between the two groups, re-calculated the damaged trees carbon storage and the damaged trees carbon storage in the report, was validated. As a result, damaged trees carbon storage in words was more than the re-calculated damaged trees carbon storage, and it was statistically significant (p<0.005). This result means that the existing method for calculating damaged tree carbon storage is overcalculated. It was judged that it was necessary to improve the calculation method. Therefore, allometric equations suitable for each dominated-tree species should be used when calculating the damaged tree carbon storage. Furthermore, we propose to establish a carbon storage calculation system based on actual data from the ecosystem so that researchers can efficiently and accurately the damaged trees carbon storage.

Changes of the Forest Types by Climate Changes using Satellite imagery and Forest Statistical Data: A case in the Chungnam Coastal Ares, Korea (위성영상과 임상통계를 이용한 충남해안지역의 기후변화에 따른 임상 변화)

  • Kim, Chansoo;Park, Ji-Hoon;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.523-538
    • /
    • 2011
  • This study analyzes the changes in the surface area of each forest cover, based on temperature data analysis and satellite imagery as the basic methods for the impact assessment of climate change on regional units. Furthermore, future changes in the forest cover are predicted using the double exponential smoothing method. The results of the study have shown an overall increase in annual mean temperature in the studied region since 1990, and an especially increased rate in winter and autumn compared to other seasons. The multi-temporal analysis of the changes in the forest cover using satellite images showed a large decrease of coniferous forests, and a continual increase in deciduous forests and mixed forests. Such changes are attributed to the increase in annual mean temperature of the studied regions. The analysis of changes in the surface area of each forest cover using the statistical data displayed similar tendencies as that of the forest cover categorizing results from the satellite images. Accordingly, rapid changes in forest cover following the increase of temperature in the studied regions could be expected. The results of the study of the forest cover surface using the double exponential smoothing method predict a continual decrease in coniferous forests until 2050. On the contrary, deciduous forests and mixed forests are predicted to show continually increasing tendencies. Deciduous forests have been predicted to increase the most in the future. With these results, the data on forest cover can be usefully applied as the main index for climate change. Further qualitative results are expected to be deduced from these data in the future, compared to the analyses of the relationship between tree species of forest and climate factors.

Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model (MaxEnt 모형을 이용한 기후변화에 따른 산사태 발생가능성 예측)

  • Kim, Hogul;Lee, Dong-Kun;Mo, Yongwon;Kil, Sungho;Park, Chan;Lee, Soojae
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • Occurrence of landslides has been increasing due to extreme weather events(e.g. heavy rainfall, torrential rains) by climate change. Pyeongchang, Korea had seriously been damaged by landslides caused by a typhoon, Ewiniar in 2006. Moreover, the frequency and intensity of landslides are increasing in summer due to torrential rain. Therefore, risk assessment and adaptation measure is urgently needed to build resilience. To support landslide adaptation measures, this study predicted landslides occurrence using MaxEnt model and suggested susceptibility map of landslides. Precipitation data of RCP 8.5 Climate change scenarios were used to analyze an impact of increase in rainfall in the future. In 2050 and 2090, the probability of landslides occurrence was predicted to increase. These were due to an increase in heavy rainfall and cumulative rainfall. As a result of analysis, factors that has major impact on landslide appeared to be climate factors, prediction accuracy of the model was very high(92%). In the future Pyeongchang will have serious rainfall compare to 2006 and more intense landslides area expected to increase. This study will help to establish adaptation measure against landslides due to heavy rainfall.

An Uncertainty Assessment for Annual Variability of Precipitation Simulated by AOGCMs Over East Asia (AOGCM에 의해 모의된 동아시아지역의 강수 연변동성에 대한 불확실성 평가)

  • Shin, Jinho;Lee, Hyo-Shin;Kim, Minji;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.111-130
    • /
    • 2010
  • An uncertainty assessment for precipitation datasets simulated by Atmosphere-Ocean Coupled General Circulation Model (AOGCM) is conducted to provide reliable climate scenario over East Asia. Most of results overestimate precipitation compared to the observational data (wet bias) in spring-fall-winter, while they underestimate precipitation (dry bias) in summer in East Asia. Higher spatial resolution model shows better performances in simulation of precipitation. To assess the uncertainty of spatiotemporal precipitation in East Asia, the cyclostationary empirical orthogonal function (CSEOF) analysis is applied. An annual cycle of precipitation obtained from the CSEOF analysis accounts for the biggest variability in its total variability. A comparison between annual cycles of observed and modeled precipitation anomalies shows distinct differences: 1) positive precipitation anomalies of the multi-model ensemble (MME) for 20 models (thereafter MME20) in summer locate toward the north compared to the observational data so that it cannot explain summer monsoon rainfalls across Korea and Japan. 2) The onset of summer monsoon in MME20 in Korean peninsula starts earlier than observed one. These differences show the uncertainty of modeled precipitation. Also the comparison provides the criteria of annual cycle and correlation between modeled and observational data which helps to select best models and generate a new MME, which is better than the MME20. The spatiotemporal deviation of precipitation is significantly associated with lower-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly are strongly associated with summer rainfalls. These lower-level circulations physically consistent with precipitation give insight into description of the reason in the monsoon of East Asia why behaviors of individually modeled precipitation differ from that of observation.

Assessment of Climate Chanage Effect on Temperature and Drought in Seoul : Based on the AR4 SRES A2 Senario (기후변화가 서울지역의 기온 및 가뭄에 미치는 영향 평가 : AR4 SRES A2 시나리오를 기반으로)

  • Kyoung, Minsoo;Lee, Yongwon;Kim, Hungsoo;Kim, Byungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.181-191
    • /
    • 2009
  • This study suggests the assessment technique for climate change effect on drought in Korea based on the AR4 SRES A2 scenario reported in IPCC fourth assessment report in 2007. IPCC provides monthly outputs of 24 climate models through the DDC. One of the models is BCM2 model which was developed at BCCR in Norway and NCEP data is used for downscaling. The K-NN(K-Nearest Neighbor) and ANN(Artificial Neural Network) are selected as downscaling technique to downscale the temperature and precipitation at Seoul station in Korea. K-NN could downscale both temperature and precipitation well. ANN made a good result for temperature, but it gave a divergence result in precipitation. Finally, SPI of Seoul station is computed to evaluate the effect of climate change on drought. BCM2 predicted that temperature will increase and drought severity will increase because of the increased drought spell at Seoul station.

Development Strategy for New Climate Change Scenarios based on RCP (온실가스 시나리오 RCP에 대한 새로운 기후변화 시나리오 개발 전략)

  • Baek, Hee-Jeong;Cho, ChunHo;Kwon, Won-Tae;Kim, Seong-Kyoun;Cho, Joo-Young;Kim, Yeongsin
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.55-68
    • /
    • 2011
  • The Intergovernmental Panel on Climate Change(IPCC) has identified the causes of climate change and come up with measures to address it at the global level. Its key component of the work involves developing and assessing future climate change scenarios. The IPCC Expert Meeting in September 2007 identified a new greenhouse gas concentration scenario "Representative Concentration Pathway(RCP)" and established the framework and development schedules for Climate Modeling (CM), Integrated Assessment Modeling(IAM), Impact Adaptation Vulnerability(IAV) community for the fifth IPCC Assessment Reports while 130 researchers and users took part in. The CM community at the IPCC Expert Meeting in September 2008, agreed on a new set of coordinated climate model experiments, the phase five of the Coupled Model Intercomparison Project(CMIP5), which consists of more than 30 standardized experiment protocols for the shortterm and long-term time scales, in order to enhance understanding on climate change for the IPCC AR5 and to develop climate change scenarios and to address major issues raised at the IPCC AR4. Since early 2009, fourteen countries including the Korea have been carrying out CMIP5-related projects. Withe increasing interest on climate change, in 2009 the COdinated Regional Downscaling EXperiment(CORDEX) has been launched to generate regional and local level information on climate change. The National Institute of Meteorological Research(NIMR) under the Korea Meteorological Administration (KMA) has contributed to the IPCC AR4 by developing climate change scenarios based on IPCC SRES using ECHO-G and embarked on crafting national scenarios for climate change as well as RCP-based global ones by engaging in international projects such as CMIP5 and CORDEX. NIMR/KMA will make a contribution to drawing the IPCC AR5 and will develop national climate change scenarios reflecting geographical factors, local climate characteristics and user needs and provide them to national IAV and IAM communites to assess future regional climate impacts and take action.

Comparative Analysis of Commercial Softwares for Wind Climate Data Analysis (풍력자원 계측자료 분석용 상용 소프트웨어 비교분석)

  • Kim, Hyun-Goo
    • New & Renewable Energy
    • /
    • v.6 no.2
    • /
    • pp.5-11
    • /
    • 2010
  • This paper reviews three commercial softwares for wind climate data analysis in wind resource assessment; WAsP/Observed Wind Climate, WindRose and Windographer. Windographer is evaluated as the best software because of its variety of input data format, analysis functions, easiness of user interface, etc. For a quantitative understanding of uncertainty depending on software selection, a benchmark is carried out with the met-mast observation dataset at the Gimnyeong Wind Turbine Performance Test Site. It is found that Weibull parameter calculation and air density correction have a dependency on the software so that such uncertainty should be considered when an analysis software is selected. It is confirmed that annual energy production calculated by WAsP using a statistical table of frequency of occurrence may have some error compared to a time-series calculation method used by the other softwares.

R Based Parallelization of a Climate Suitability Model to Predict Suitable Area of Maize in Korea (국내 옥수수 재배적지 예측을 위한 R 기반의 기후적합도 모델 병렬화)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.164-173
    • /
    • 2017
  • Alternative cropping systems would be one of climate change adaptation options. Suitable areas for a crop could be identified using a climate suitability model. The EcoCrop model has been used to assess climate suitability of crops using monthly climate surfaces, e.g., the digital climate map at high spatial resolution. Still, a high-performance computing approach would be needed for assessment of climate suitability to take into account a complex terrain in Korea, which requires considerably large climate data sets. The objectives of this study were to implement a script for R, which is an open source statistics analysis platform, in order to use the EcoCrop model under a parallel computing environment and to assess climate suitability of maize using digital climate maps at high spatial resolution, e.g., 1 km. The total running time reduced as the number of CPU (Central Processing Unit) core increased although the speedup with increasing number of CPU cores was not linear. For example, the wall clock time for assessing climate suitability index at 1 km spatial resolution reduced by 90% with 16 CPU cores. However, it took about 1.5 time to compute climate suitability index compared with a theoretical time for the given number of CPU. Implementation of climate suitability assessment system based on the MPI (Message Passing Interface) would allow support for the digital climate map at ultra-high spatial resolution, e.g., 30m, which would help site-specific design of cropping system for climate change adaptation.