• 제목/요약/키워드: Cleavage fracture

검색결과 111건 처리시간 0.023초

Zircaloy-4의 플라즈마 아크용접에서 용접변수가 비이드형상에 미치는 영향 (A Study on Effects of Parameters on Beads by Plasma Arc Welding for Zircaloy-4)

  • 고진현;김수성;이영호
    • Journal of Welding and Joining
    • /
    • 제15권6호
    • /
    • pp.57-65
    • /
    • 1997
  • A study was undertaken to determine the influence of welding variables such as shielding and plasma gases, torch standoff, travel speed and heat input, etc. on the quality of plasma arc welds in Zircaloy-4 sheet, 2mm thick. Effect of shielding gases and their flow rates on the mechanical properties of Zircaloy-4 welds by plasma arc welding were determined in terms of tensile, bardness and bend tests. The microstructure and fracture surface of Zircaloy-4 welds were investigated by optical and scanning electron microscopies. In addition, the causes of porosity and undercut in plasma arc welds of Zircaloy-4 were also investigated. Zircaloy-4 weld bead width and depth by helium shielding gas showed a wider and deeper than those by argon. It was found that Zircaloy-4 welds with shielding gas of helium did dxhibit a little smoother and uniform weld beads than those with shielding gas of argon. It was also found that the optimum gas flow rates for Zircaloy-4 welding were 0.45l/min for plasma gas with Ar and 4.5 - 6 l/min for shielding gas with He. In addition, there was no big difference in the microstructure and fracture surface of the weld metals made by either Ar shielding gas or He shielding gas.

  • PDF

TIG 용접한 저방사화 페라이트강 (JLF-1)의 고온강도 및 피로수명특성 (High Temperature Tensile Strength and Fatigue Life Characteristics for Reduced Activation Ferritic Steel (JLF-1) by TIG Welding)

  • 윤한기;이상필;김사웅
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1444-1450
    • /
    • 2003
  • The fatigue life and tensile strength of JLF-1 steel (Fe-9Cr-2W-V-Ta) and its TIG weldment were investigated at the room temperature and $400^{\circ}C$. Four kinds of test specimens, which associated with the rolling direction and the TIG welding direction were machined. The base metal of JLF-1 steel represented almost anisotropy in the tensile properties for the rolling direction. And the base metal of JLF-1 steel showed lower strength than that of TIG weldment. Also, the strength of all materials entirely decreased in accordance with elevating test temperature. Moreover, the fatigue limit of weld metal was largely increase than that of base metal at both temperatures. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The SEM fractography of tensile test specimen showed conspicuous cleavage fracture of a radial shape. In case of fatigue life test specimen, there were so many striations at crack initiation region, and dimple was observed at final fracture region as a ductile fracture mode.

해양구조용 강재의 국부취화영역에 관한 연구 (Local brittle zone of offshore structural steel welds)

  • 김병천;엄정현;이종섭;이성학;이두영
    • Journal of Welding and Joining
    • /
    • 제7권2호
    • /
    • pp.35-48
    • /
    • 1989
  • This study is concerned with a correlation of microstructure and local brittle zone (LBZ) in offshore structural steel welds. The influence of the LBZ on fracture toughness was investigated by means of simulated heat-affected zone (HAZ) tests as well as welded joint tests. Micromechanical processes involved in void and cleavage microcrack formation were also identified using notched round tensile tests and subsequent SEM observations. The LBZ in the HAZ of a multiphase welded joint is the interstitially reheated coarse grained HAZ, which is influenced by metallurgical factors such as effective grain size, the major matrix structure and the amount of high-carbon martensite-austenite (M-A) constituents. The experimental results indicate that Chirpy energy was found to scale monotonically with the amount of M-A constituents, confirming that the M-A constituent is the major microstructural factor controlling the HAZ toughness. In addition, voids and microcracks are observed to initiate at M-A constituents by the shear cracking process. Thus, the M-A constituent played an important role in initiating the voids and microcracks, and consequently caused brittle fracture.

  • PDF

펄라이트 조직을 갖는 초고강도 볼트의 수소취성 저항성 (Resistance to Hydrogen Embrittlement of Ultra-high Strength Pearlitic Bolt)

  • 유아정;이영국
    • 열처리공학회지
    • /
    • 제36권1호
    • /
    • pp.15-21
    • /
    • 2023
  • Recently, ultra-high strength bolts have been developed for weight lightening of a vehicle and fuel efficiency. However, some amount of diffusible H is absorbed into the bolt during its manufacturing process so that H embrittlement (HE) often occurs particularly in high strength bolts with a tempered martensitic microstructure. This brings attention to ultra-high strength pearlitic bolts with a high resistance to HE. Therefore, in this study the HE resistance of the 1.6 GPa grade pearlitic bolt was evaluated through tightening tests and slow strain rate tests (SSRTs), and fracture surfaces of failed bolts were comparatively observed. A critical H content for the tightening test turned out to be ~0.23-0.35 mass ppm. The bolt with a diffusible H content of ~0.35 mass ppm was fractured during the tightening test, showing a quasi-cleavage fracture surface, indicating the occurrence of HE. In addition, the bolt underwent premature elastic failure during the SSRT. This implies that the HE resistance of high strength bolts can be evaluated by both tightening test and SSRT.

포천 화강암의 결 이방성이 수압파쇄거동에 미치는 영향 (Influence of the Cleavage Anisotropy of Pocheon Granite on Hydraulic Fracturing Behaviour)

  • 정성규;장리;염선;김광염;민기복
    • 터널과지하공간
    • /
    • 제26권4호
    • /
    • pp.327-337
    • /
    • 2016
  • 본 연구에서는 화강암 내부의 미세균열 분포에 따른 이방성이 수압파쇄실험 결과에 미치는 영향을 평가하였다. 압력증가율을 일정하게 설정하여 수압파쇄실험을 수행한 결과, 원주방향(주입정 방향과 직교)으로 리프트면이 분포한 시료의 파쇄압력이 가장 낮게 측정되었고, 이는 미세균열의 밀도가 높기 때문이다. 수압파쇄실험과정에서 시료 내부의 변화가 발생하는 주입압력의 크기와 유체 주입속도의 변화 또한 결방향에 따라 분포한 미세균열의 밀도와 관계가 있는 것으로 판단된다. 유체주입속도를 일정하게 설정하여 수압파쇄실험을 수행하였을 경우, 상대적으로 미세균열의 밀도가 높은 리프트면이 원주방향으로 분포된 시료에서 주입압력증가율이 낮게 나타났고, 유체가 침투될 수 있는 균열망이 상대적으로 적게 형성된 그레인면 및 하드웨이면이 원주방향으로 분포된 시료에서는 압력증가율이 높게 나타났다. X-ray CT 촬영을 통해 시료 내부에 생성된 균열의 방향을 확인한 결과, 대부분의 시료에서 리프트면 혹은 그레인면과 평행한 방향으로 균열이 생성된 것을 확인하였고, 이는 암석 내에 상대적으로 미세균열의 밀도가 높아서 분리성이 크기 때문이다.

분말야금법으로 제작한 NiAl합금의 기계적성질 및 형상기억특성 (Mechanical Properties and Shape Memory Characteristics of NiAl Alloys by Powder Metallurgy)

  • 한창석;진성윤;권혁구
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.231-238
    • /
    • 2020
  • The composition of martensite transformation in NiAl alloy is determined using pure nickel and aluminum powder by vacuum hot press powder metallurgy, which is a composition of martensitic transformation, and the characteristics of martensitic transformation and microstructure of sintered NiAl alloys are investigated. The produced sintered alloys are presintered and hot pressed in vacuum; after homogenizing heat treatment at 1,273 K for 86.4 ks, they are water-cooled to produce NiAl sintered alloys having relative density of 99 % or more. As a result of observations of the microstructure of the sintered NiAl alloy specimens quenched in ice water after homogenization treatment at 1,273 K, it is found that specimens of all compositions consisted of two phases and voids. In addition, it is found that martensite transformation did not occur because surface fluctuation shapes did not appear inside the crystal grains with quenching at 1,273 K. As a result of examining the relationship between the density and composition after martensitic transformation of the sintered alloys, the density after transformation is found to have increased by about 1 % compared to before the transformation. As a result of examining the relationship between the hardness (Hv) at room temperature and the composition of the matrix phase and the martensite phase, the hardness of the martensite phase is found to be smaller than that of the matrix phase. As a result of examining the relationship between the temperature at which the shape recovery is completed by heating and the composition, the shape recovery temperature is found to decrease almost linearly as the Al concentration increases, and the gradient is about -160 K/at% Al. After quenching the sintered NiAl alloys of the 37 at%Al into martensite, specimens fractured by three-point bending at room temperature are observed by SEM and, as a result, some grain boundary fractures are observed on the fracture surface, and mainly intergranular cleavage fractures.

요드분위기에서 지르칼로이 피복재의 저변형율속도 의존성(I) (The Slow Strain Rate Dependence of Zircaloy-4 Cladding Tube in Iodine Atmosphere (I))

  • 최용;강영환;류우석;임창생
    • Nuclear Engineering and Technology
    • /
    • 제17권3호
    • /
    • pp.211-215
    • /
    • 1985
  • 온도 및 연신율 변촤가 Zircaloy-4의 요드 응력부식 거동에 미치는 영향을 30$0^{\circ}C$에서 일정 하중법과 300, 350, 40$0^{\circ}C$에서 일정 연신율법으로 ($10^{-5}$sec~$10^{-6}$ sec) 3.34mg $I_2$/㎤의 요드분위기에서 연구하였다. 요드 응력부식균열에 대한 저항성은 온도가 상승하거나 변형속도가 감소하면 감소했고 파손 시간과 응력과의 관계는1/tf∝exp (0.3$\sigma$/$\sigma$uTs-31.5)로 표시할 수 있었다. 30$0^{\circ}C$에서 요드 응력 부식 균열에 대한 저항성을 불활성 분위기에서의 파손에너지에 대한 요드분위기에서의 파손 에너지의 비율로 표시할 때 변형속도가 7.6$\times$$10^{-6}$ sec 부근에서 저항성이 가장 낮았고 온도가 35$0^{\circ}C$, 40$0^{\circ}C$ 로 증가함에 따라 보다 높은 변형속도에서 최저 저항성을 나타내는 경향을 보였다. 요드 응력부식 균열의 파단면에서 준-벽계 파면(quasi-cleavage fracture)을 관찰했다. 전술한 결과에 의하면 Zircaloy-4의 요드 응력부식균열의 기구에 있어서 보호 피막파손단계 (film rupture step)가 중요한 과정으로 추정된다.

  • PDF

Failure Analysis of a Ball in the Nuclear Fuel Exchanger

  • Kim, H.P.;Kim, D.J.;Hwang, S.S.;Joung, M.K.;Lim, Y.S.;Kim, J.S.
    • Corrosion Science and Technology
    • /
    • 제4권5호
    • /
    • pp.211-216
    • /
    • 2005
  • Failure analysis of the latch ram ball and the C-ram ball with the trade name AFBMA Gr. 50 Colmonoy No. 6, has been performed to identify the root cause of the failure. The study required the extraction of the both failed and normal balls from the nuclear fuel exchanger. Microstructures of both balls were examined after polishing and etching. Breaking tests of both the ball revealed similarity in cleavage surfaces. Fracture surfaces of both failed ball and normal ball after breaking test were examined with SEM and EDX. Microstructure of the ball revealed an austenite phase with coarse Cr rich precipitate. Indented marks observed on the surface of the failed ball are believed to be produced by overloading. In the light of the afore mentioned observations and studies, the failure mechanism of the ball in nuclear fuel exchanger seem to be caused by impact or mechanical overloading on ball.

Hf가 첨가된 Fe-30at.%A1-5at.%Cr 합금의 미세조직 및 열간압연가공 특성 (Effects of Hf Addition on Microstructure and Hot Workability of Fe-30at.%A1-5at.%Cr Alloy)

  • 윤계림;이도재;백대화;이경구
    • 한국주조공학회지
    • /
    • 제21권6호
    • /
    • pp.336-342
    • /
    • 2001
  • This study was carried out to examine the effects of adding 0.3at.%Hf in Fe-30at.%Al-5at.%Cr alloy on the variation of microstructures and hot workability. The effect of hot rolling on mechanical properties was estimated by measuring the elongation and tensile strength after rolling at 800 and 1000 respectively. Microstructure of Fe-30at.%Al-5at.%Cr alloy was consisted of large equiaxed grains and it was changed to quasi-equiaxed or columnar structures by adding 0.3at.%Hf to Fe-30at.%Al-5at.%Cr alloy. Every specimens showed a decreased tensile strength after hot rolling compared to that of before rolling. The elongation was increased by hot rolling. Remarkable changes in elongation by hot rollong was observed such as from 1.4% to 4.5% elongation at the specimen of 0.3at.%Hf added to Fe-30at.%Al-5at.%Cr. Fe-30at.%Al-5at.%Cr alloy showed typical cleavage fracture on tensile failure and hot rolling has negligible effects on fracture mode in this alloy. However at the alloy containing Hf fracture mode was changed by hot rolling from intergranular to mixed intergranular and transgranular fracture mode.

  • PDF

정전위 SSRT법에 의한 해양구조물용 Cu함유 고장력저합금강의 수소취성한계전위 규명에 관한 연구 (A Study of Hydrogen Embrittlement Limit Potential of Cu-Containing High Strength Low Alloy Steel for Marine Structure by Potentiostatic SSRT Method)

  • 김성종;박태원;심인옥;김종호;김영식;문경만
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.182-190
    • /
    • 2001
  • A marine structural material was well known to have high tensile strength, good weldability and proper corrosion resistance. Cu-containing high strength low alloy(HSLA) steel was recently developed for their purposes mentioned above. And the steel is free about preheating for welding, therefore it is reported that shipbuilding cost by using it can be saved more or less. However the marine structural materials like Cu-containing HSLA steel are being generally adopted with cathodic protection method in severe corrosive environment like natural sea water but the high strength steel may give rise to Hydrogen Embrittlement due to over protection at high cathodic current density for cathodic protection. In this study Cu-containing HSLA steel using well for marine atructure was investigated about the susceptibility of Hydrogen Embrittlement as functions of tensile strength, strain ratio, fracture time, and fracture mode, etc. and an optimum cathodic protection potential by slow strain rate test(SSRT) method as well as corrosion properties in natural sea water. And its corrosion resistance was superior to SS400 steel, but Hydrogen Embrittlement susceptibility of Cu-containing HSLA steel was higer than that of SS400 steel. However Hydrogen Embrittlement of its steel by SSRT method was showed with pheonomena such as decreasing of fracture time, strain ratio and fracture mode of QC(quasi-cleavage). Eventually it is suggested that an optimum cathodic protection potential not presenting Hydrogen Embrittlement of Cu-containing of HSLA steel by SSRT method was from-770mv(SCE) to - 900mV(SCE)under natural sea water.

  • PDF