• Title/Summary/Keyword: Clearance Angle

Search Result 186, Processing Time 0.026 seconds

A Study on the Flank Wear of Carbide Tool in Machining SUS304 (SUS304 절삭시 Carbide 공구의 Crater 마모에 관한 연구)

  • Jeong, Jin-Yong;O, Seok-Hyeong;Kim, Jong-Taek;Seo, Nam-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.44-54
    • /
    • 1991
  • A Study was made on falnk wear in carbide tools in turning SUS304 steel. When an austenitic stainless steel (SUS304 steel) is cut with the tool, saw-toothed chip are produced. It is found that machining SUS304 steel would make a tool worn fast. For increasing productivity, tool wear has to be predicted and controlled. An amended cutting geometry consisting of a negative rake angle ($-6^{\circ}$ ) and a high clearance angle ($-17^{\circ}$ ) is proposed for decreasing carbide tool wear (flank) in the machining of SUS304 steel. The amended cutting geometry is found to make the flank wear lower than a general cutting geometry (rake angle $6^{\circ}$ , clearance angle $5^{\circ}$). The effects of the three cutting variables (cutting speed, feed, tool radius) on the flank wear analyzed by fiting a simple first-order model containing interaction terms to each flank wear parameter by means of regression analysis and the predicted from first-order regression analysis model equation of flank wear.

  • PDF

Application of the Concept of a sSnsitivity Linkage for the Analysis of Mechanical Error in 4-Bar Mechanism (민감도 해석기구를 이용한 4절기구의 기계적 오차해석)

  • Sin, Jae-Kyun;Choi, Hong-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1508-1515
    • /
    • 1996
  • The method of utilizing sensitivity linkages for the analysis of mechanical errors are proposed. As sources of the mechanical error, tolerances in the link length and clearances in thejoints are considered. It is demonstrated that the problem of calculating mechanical errors of a 4-bar mechanism can be transformed into a problem of conventeional velocity analysis of a sensitivity linkage. As a result of the present study, it is found and proved that the mechanical error of the output angle in the 4-Bar mechaism is represented as a simple harmonic function with respect to the relative position of the pin on the clearance circle. Also the vector representing the mechanical error of a coupler point makes, in general, an ellipse as the relative angle varies on the clearance circle. With these results we can better identify the characteristic of the mechanical errors in linkages.

Static Characteristics and Design of Hemispherical Aerodynamic Bearing (반구형 공기동압베어링의 정적 특성 및 설계)

  • 김승곤;김준영;최환영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.217-224
    • /
    • 1997
  • Static characteristics of hemispherical aerodynamic bearing is studied theoretically. In this paper nonlinear equation of second order considering compressibility and slip effect of air is calculated by Newton-Raphson method. Results indicate that axial load capacity has maximum value when the inclination angle of groove is about 30$\circ$, the ratio of groove clearance to ridge clearance is two. We also present the design method of hemispherical Aerodynamic bearing based on it's load capacity taking into account manufacturing and assembling viewpoint.

  • PDF

A Study on the Leakage Analysis of Scroll Compressor with Thermal Deformation Considered (열변형을 고려한 스크롤 압축기의 누설 해석에 관한 연구)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2428-2437
    • /
    • 2000
  • In general, it is known that the portion of leakage loss is more than 20 % of total loss in scroll compressor. So far many studies have been done to improve the leakage problem and volumetric efficiency. In order to do this it is necessary that the leakage is exactly evaluated for conventional scroll model. Almost all studies that have been done were assumed that the clearance remains constant while operating. But in actual operating conditions, scroll wrap is deformed due to elevated refrigerant gas temperature. And this makes the leakage clearance change, so the leakage mass flow and the volumetric efficiency are also changed. In this study we assumed the steady state operating condition and obtain the average temperature and convection heat transfer coefficient in terms of involute angle. With these results, using finite element method we analyzed the heat transfer of scroll wrap, then did thermal deformation analysis. Then we obtain the leakage clearance and do the leakage and volumetric efficiency analysis. Compared with undeformed feature, we examine the effect of the thermal deformation on the leakage. The results say that the leakage mass flow for the case of considering thermal deformation is less than that for the unconsidered one, and this means that the leakage clearance is reduced due to thermal deformation.

Performance Prediction and Flow Field Calculation for Airfoil Fan with Impeller Inlet Clearance

  • Kang, Shin-Hyoung;Cao, Renjing;Zhang, Yangjun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.226-235
    • /
    • 2000
  • The performance prediction of an airfoil fan using a commerical code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passsage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub.

  • PDF

Formability of Flow Turning Process (플로우 터닝 공정에서의 성형성 연구)

  • Choi S.;Kim S. S.;Na K. H.;Cha D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.195-199
    • /
    • 2001
  • The flow turning process, an incremental forming process, is a cost-effective forming method for axi-symmetric intricate parts to net shape. However, the flow turning process shows a fairly complicated deformation, it is very difficult to obtain satisfactory results. Therefore extensive experimental and analytical research has not been carried out. In this study, an fundamental experiment was conducted to improve productivity with process parameters such as tool path, angle of roller holder($\alpha$), feed rate(v ) and comer radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have an effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distributions of a multistage cup obtained by flow turning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

A Study on the Burr Formation in Shearing with Al Alloy (Al 합금의 전단작업시 발생하는 버어에 관한 연구)

  • Ko, Dae-Lim;Jung, Dong-Won;Kim, Jim-Moo;Lee, Kyung-Sick
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.17-21
    • /
    • 2007
  • Shearing including punching, blanking, trimming, slitting, etc is one of the most frequently used processes in sheet metal manufacturing. It has been widely used for manufacturing autobody, electronic components, aircraftbody, etc. In this paper, it has been researched by the experiment to examine the effect of burr height corresponding to die clearance, cutting angle, tool sharpness, etc. This paper presents the experimental results with using Al alloy sheet.

  • PDF

Burrless shearing of the micro wire (미세 와이어의 버 없는 전단에 관한 연구)

  • Kim Woong-Kyum;Hong Nam-Pyo;Kim Heon-Young;Kim Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.52-56
    • /
    • 2006
  • Punching tools like an electrodes are made by milling or etching or EDM. These methods had time consuming, low efficiency and air pollution. So, we have developed a shearing device which counter punching method for burrless cutting of micro wire. Using the straightened SUS304 wire with $200{\mu}m$ diameter, we confirmed the tendency of the shear plane for punch tools. It was impossible to completely remove the bun in the shearing process. In order to minimize the burr size and fine shear plane, we have accomplished the various experiment conditions such as the U-groove, the effect of the counter punch, shear angle and clearance. The results of the experiments show that indentation, slip plane and bent shape were related to the shear angle and clearance.

A Study on the Performance of the Wing In Ground Effect by a Vortex Lattice Method (와류 격자법에 의한 지면효과익의 성능 연구)

  • Jeong, Gwang-Hyo;Jang, Jong-Hui;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.87-96
    • /
    • 1998
  • A numerical simulation was done to investigate the performance of thin wings in close vicinity to ground. The simulation is based on Vortex Lattice Method(VLM) and freely deforming wake elements are taken into account for a sudden acceleration case. The parameters covered in the simulation are angle of attack, aspect ratio, ground clearance, sweep angle and taper ratio. In addition, the effect of the wing endplate on the ground effect is included. The wing sections used for present computations are uncambered, cambered and S-types. The present computational results are compared with other published computational results and experimental data.

  • PDF

화학기계적 연마 가공에서의 윤활 특성 해석

  • 박상신;조철호;안유민
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.272-277
    • /
    • 1998
  • Chemical-Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active, abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves tribology. The liquid slurry is trapped between the wafer(work piece) and pad(tooling) forming a lubricating film. For the first step to understand material removal rate of the CMP process, the lubricational analyses were done with commercial 100mm diameter silicon wafers to get nominal clearance of the slurry film, roll and pitch angle at the steady state. For this purpose, we calculate slurry pressure, resultant forces and moments at the steady state in the range of typical industrial polishing conditions.

  • PDF