• Title/Summary/Keyword: Clearance Angle

Search Result 187, Processing Time 0.021 seconds

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.

Optimum Geometry of Glass Lined HOMEBASE Impeller for Gas-Liquid System of Low Viscosity Liquid (저점도 액 통기 교반용 글라스라이닝 홈베이스 임펠러의 최적 형상)

  • Koh, Seung-Tae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.542-547
    • /
    • 2021
  • Glass lined impellers are corrosion resistant to most chemicals, including strong acids, and also have a smooth, non-stick surface, easy to clean and free from impurities in the process. Glass lined home base impeller is a multi-purpose impeller designed to stir a wide viscosity range of liquids from low viscosity fluids to high viscosity fluids, among others, cell culture, yeast culture, and beer fermentation pots, especially used for air-water system breathable stirring. The glass lining for HB impellers, which are simple in structure and competitive in performance, is essential to have upper and lower division in order to make the joint area between the impeller and shaft as small as possible. The upper and lower division of the impeller hardly affects the mixing performance, but the aeration performance. In this study, in order to optimize the shape of the Glass Lining HB impeller, a study was conducted on the effect of the angle between the upper and lower impellers, the clearance between the impellers, and the number of baffles on the aeration power. The optimal shape and baffle plate conditions for the Glass lined HB impeller were derived through the study results that the angle and the clearance between the upper and lower impellers decreased the ration of the power consumption with aeration Pg and that without aeration P0, Pg/P0.

Surface Lay Effects on the Lubrication Characteristics in the Valve Part of a Swash-plate Type Axial Piston Pump (표면가공무늬가 사판식 액셜 피스톤펌프의 밸브부 윤활특성에 미치는 영향에 관한 연구)

  • Shin, Jung-Hun;Kang, Bo-Sik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • This application study of a swash-plate type axial piston pump was concerned about the lubrication characteristics between cylinder barrel and valve plate which are the main rotating body and its opposite sliding part respectively. A computer simulation was implemented to assess bearing and sealing functions of the fluid film between cylinder barrel and valve plate. A numerical algorithm was developed to facilitate simultaneous calculations of dynamic cylinder pressure, 3 degree-of-freedom barrel motions considering inertia effect, and fluid film pressure assuming full fluid film lubrication regime. Central clearance, tilt angle, and azimuth angle of the rotating body were calculated for each time step. Surface waviness was found to be an influential factor due to the small fluid film thickness which can appear in flat land bearings. Five surface lays which can form on the lubrication surface in accordance with machining process were defined and analyzed using the simulation tool. Oil leakage flow and frictional torque in the fluid film between cylinder barrel and valve plate were also calculated to discuss in the viewpoint of energy loss. The simulation results showed that in actual sliding conditions proper surface non-flatness can make a positive effect on the energy efficiency and reliability of the thrust bearing.

A study on the fabrication and processing of ultra-precision diamond tools using FIB milling (FIB milling을 이용한 고정밀 다이아몬드공구 제작과 공정에 관한 연구)

  • Wi, Eun-Chan;Jung, Sung-Taek;Kim, Hyun-Jeong;Song, Ki-Hyeong;Choi, Young-Jae;Lee, Joo-Hyung;Baek, Seung-Yup
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.56-61
    • /
    • 2020
  • Recently, research for machining next-generation micro semiconductor processes and micro patterns has been actively conducted. In particular, it is applied to various industrial fields depending on the machining method in the case of FIB (Focused ion beam) milling. In this study, intends to deal with FIB milling machining technology for ultra-precision diamond tool fabrication technology. Ultra-precision diamond tools require nano-scale precision, and FIB milling is a useful method for nano-scale precision machining. However, FIB milling has a problem of Gaussian characteristics that are differently formed according to the beam current due to the input of an ion beam source, and there are process conditions to be considered, such as a side clearance angle problem of a diamond tool that is differently formed according to the tilting angle. A series of process steps for fabrication a ultra-precision diamond tool were studied and analyzed for each process. It was confirmed that the effect on the fabrication process was large depending on the spot size of the beam and the current of the beam as a result of the experimental analysis.

Cavity Design for Injection Molded Gears by the Compensation Method of Design Parameters (설계인자 보정방법에 의한 사출성형기어의 캐비티 설계)

  • Lee, Sung-Chul;Kim, Choong-Hyun;Kwon, Oh-Kwan;Huh, Yong-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3142-3151
    • /
    • 1996
  • As plastics shrink when changing from a molten to a solid state, mold cavities must by made larger than the product specification, In making molded gears, the teeth in the cavity must be carefully compensated for shrinkage so that the teeth of gears will have the correct profile. Two compensation methods are widely used in the cavity design. One is the compensation of a module and the other is the modification of a pressure angle and profile shifting coefficient. These methods, however, do not provide a gear cavity with all disign parameters for gears and several parameters are determined by experience. In this paper, the new design technique, namely the compensation method of design parameters, was proposed , which is based on the three kinds of shrinkage rates obtained from the measuring data of the prototype of molded gears. Using the shrinkage rates in the tip circle, tooth heigth and tooth thickness, we calculate the whole design parameters of a gear cavity. Thus, the gear cavity is considered as a complete gear with the compensated module, pressure angle, profile shifting coefficient, clearance coefficient and back lash amount so that the formula of gears can be applied to the cavity design effectively. Experimental results show that more precision molded gears can be made by using the proposed design method.

Biomechanical Analysis of Take-Off Techniques of Women's High Jump Winners at IAAF World Championships, Daegu 2011 (세계일류여자높이뛰기선수의 발구름 기술에 대한 바이오메카닉스적 분석)

  • Bae, Young-Sang;Kim, Eui-Hwan;KIm, Ki-Man;Lee, Jeong-Min;Kim, Sung-Sup;Kwon, Moon-Seok;Wi, Ung-Ryang
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.585-593
    • /
    • 2011
  • The purpose of this study was to analyze, from a kinematical point of view, the high jump techniques of three women's high jump winners at the IAAF World Championships, Daegu 2011. The trends for the techniques of the world's top high jumpers were examined, with a view toward adapting these techniques to the physical characteristics of Korean women's high jumpers. It was valuable that Di Martino, who was the shortest in height, was able to win a medal by using a single arm swing take-off technique, along with a half flexed leading leg swing to attain a deep arch and clear the bar. This showed that the world's top athletes used jumping techniques with no decrease in the run-up velocity at the take-off. Furthermore, It appeared that the knee joint angle at take-off had a direct effect on the body position at take-off (H1).

Development of a Belt Pick-up One-row Soybean Cutter (벨트 파지식 1조 콩 예취기 개발)

  • Jun, Hyeon-Jong;Kang, Tae-Gyoung;Lee, Choung-Keun;Choi, Yong;Lee, Chai-Sik;Hong, Jong-Tae
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.373-379
    • /
    • 2010
  • This study was carried out to develop a belt pick-up type one-row soybean cutter, using physical properties and production conditions of soybeans. The prototype soybean cutter consisted of 4 parts: cutting part, conveying part, collecting part, and travelling part. The prototype soybean cutter was designed to cut soybeans planted with a row spacing of 600 mm, and at a height of 30 mm from the bed bottom using a disk saw. Through various trials with different peripheral velocities of the disk saw and forward speed of the cutter, determined ranges of the peripheral velocity of the disk saw cutting soybeans stems were greater than 18.3 m/s. Spacing between pick-up belts (clearance) was in a range of 60~90 mm so that soybeans could be picked at heights greater than 25 cm, and the size and shape of the pick-up belt were determined the conventional manual harvesting method. The optimal ratio between the forward speed of cutter and the peripheral speed of pick-up belts were from 1 to 1.2 by theoretical analysis. the pick-up belts had a $35^{\circ}$ of tilted angle and $90^{\circ}$ of twisted angle to pick up soybeans safely from the plant input to the lower end of the belts and convey soybeans to the upper end of belts nearby a container. The soybeans at the rear container were dropped down on the soybean row with an interval. The effective field capacity of the prototype soybean cutter was 0.136 ha/h, reducing the working hour by 92% when compared with the manual cutting.

Dynamic Analysis of a Reciprocating Compression Mechanism Considering Hydrodynamic Forces

  • Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.844-853
    • /
    • 2003
  • In this paper, a dynamic analysis of the reciprocating compression mechanism of a small refrigeration compressor is performed. In the problem formulation of the mechanism dynamics, the viscous frictional force between the piston and the cylinder wall is considered in order to determine the coupled dynamic behaviors of the piston and the crankshaft. Simultaneous solutions are obtained for the equations of motion of the reciprocating mechanism and the time-dependent Reynolds equations for the lubricating film between the piston and the cylinder wall and for the oil films on the journal bearings. The hydrodynamic forces of the journal bearings are calculated by using a finite bearing model along with the Gumbel boundary condition. A Newton-Raphson procedure is employed in solving the nonlinear equations for the piston and crankshaft. The developed computer program can be used to calculate the complete trajectories of the piston and the crankshaft as functions of the crank angle under compressor-running conditions. The results explored the effects of the radial clearance of the piston, oil viscosity, and mass and mass moment of inertia of the piston and connecting rod on the stability of the compression mechanism.

Effect of Punch Design and Friction Condition on Deformation Pattern in Boss and Rib Test (보스-리브 시험 시 펀치 형상 및 마찰 조건에 따른 변형 양상에 대한 연구)

  • Yun, Y.W.;Kang, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.332-337
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitative evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and friction condition on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the heights of the boss and rib. In addition, the effect of flow stress was also investigated on the deformation patterns through FE simulations.

  • PDF

Numerical Study on the Gap Flow of a Rudder System with Bisymmetric Blocking Bar (차단 봉이 혼과 타판 사이에 대칭으로 배치된 타의 틈새유동 수치해석)

  • Oh, Jung-Keun;Seo, Dae-Won;Kim, Hyo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.460-470
    • /
    • 2009
  • In recent practice a half round prismatic bar has fillet welded or formed through foundry work along the centerline on rear concave surface of the horn to mitigate gap flow between fixed and movable part of the rudder system. When the gap clearance has been blocked with this practice, numerical simulations indicate that the practices are not only effective in reducing the gap flow but also in mitigating the cavitation. The blocking effects are remarkably improved when a pair of blocking bar is bisymmetrically attached with respect to centerline on the opposite convex surface of the movable part. The blocking bar could be placed on the exposed surface under maximum rudder angle. This implies that the blocking bar could be easily adopted not only in a design stage but also in a maintenance stage for mitigating rudder cavitation. In addition, the numerical simulations imply that more improvements could be anticipated through the selection of section shape of prismatic bar for gap flow blocking.