• Title/Summary/Keyword: Clear sky

Search Result 207, Processing Time 0.026 seconds

A Study on Effect of $NO_2$ Photodissociation rate on Ozone concentration from Rural and Urban Area in the Winter (청정지역과 도시지역에서 $NO_2$ 광분해율이 오존농도에 미치는 영향에 관한 연구)

  • 이정주;이동범;윤중섭
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.141-147
    • /
    • 2000
  • Due to a rapid in automobiles since the 1980’s, the concentration of NO, and HC has also increased along with cases of VOCs. These air pollutants have created $O_3$ concentration, which cause a harmful effect to the human health. This issue has become a subject of great public interest. For this paper, to compare the concentration of $O_3$, NO, N $O_2$ between the rural and urban area in the winter, the concentrations of each have been measuredevery hour during Jan.~Feb. 2000, 1998, respectively. To calculate the Photochemical Steady State, $\Phi$= $J_{N O_2}$[N $O_2$]/ $k_1$[NO][ $O_3$], temperature and $J_{ N O_2}$ has been determined. The NO concentration in the rural are showed at below 10 ppb while the NO concentration in the urban area showed maximum value of 90~120 ppb. But the $O_3$ concentration in both areas showed less than 30 ppb. The reason is that the N $O_2$ photodissiciation rate is low due to the temperature being below 2$^{\circ}C$ and less than 60 degrees in the solar zenith angle during the winter time, which makes the $O_3$ concentration in both areas, similar in the concentration level. N $O_2$ photodissociation rate in both ares showed maximum value of 3.0mW/$\textrm{cm}^2$. Values of $\Phi$ determined from the rural area was consistently the unity, approaching 1. But values of $\Phi$ determined from the urban was roughly higher than unity, approaching above 1or 2 for clear sky-high sun(10:00~16:00).

  • PDF

Early-type host galaxies of Type II and Ib supernovae

  • Suh, Hye-Won;Yoon, Sung-Chul;Jeong, Hyun-Jin;Yi, Suk-Young K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Recent studies find that some early-type galaxies host Type II or Ibc supernovae (SNe II, Ibc). This may imply recent star formation activities in these SNe host galaxies, but a massive star origin of the SNe Ib so far observed in early-type galaxies has been questioned because of their intrinsic faintness and unusually strong Ca lines shown in the nebular phase. To address the issue, we investigate the properties of early-type SNe host galaxies using the data with Galaxy Evolution Explorer (GALEX) ultraviolet photometry and the Sloan Digital Sky Survey optical data. Our sample includes eight SNe II and one peculiar SN Ib (SN 2000ds) host galaxies as well as 32 SN Ia host galaxies. The host galaxy of SN 2005cz, another peculiar SN Ib, is also analyzed using the GALEX data and the NASA/IPAC Extragalactic Database optical data. We find that the NUV?optical colors of SN II/Ib host galaxies are systematically bluer than those of SN Ia host galaxies, and some SN II/Ib host galaxies with NUV - r colors markedly bluer than the others exhibit strong radio emission. We perform a stellar population synthesis analysis and find a clear signature of recent star formation activities in most of the SN II/Ib host galaxies. Our results generally support the association of the SNe II/Ib hosted in early-type galaxies with core collapse of massive stars. We briefly discuss implications for the progenitors of the peculiar SNe Ib 2000ds and 2005cz.

  • PDF

PROBABILITY DISTRIBUTION OF SURFACE WAVE SLOPE DERIVED USING SUN GLITTER IMAGES FROM GEOSTATIONARY METEROLOGICAL SATELLITE AND SURFACE VECTOR WINDS FROM SCATTEROMETERS

  • Ebuchi, Naoto;Kizu, Shoichi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.615-620
    • /
    • 2002
  • Probability distribution of the sea surface slope is estimated using sun glitter images derived from visible radiometer on Geostationary Meteorological Satellite (GMS) and surface vector winds observed by spaceborne scatterometers. The brightness of the visible images is converted to the probability of wave surfaces which reflect the sunlight toward GMS in grids of 0.25 deg $\times$ 0.25 deg. Slope and azimuth angle required for the reflection of the sun's ray toward GMS are calculated for each grid from the geometry of GMS observation and location of the sun. The GMS images are then collocated with surface wind data observed by three scatterometers. Using the collocated data set of about 30 million points obtained in a period of 4 years from 1995 to 1999, probability distribution function of the surface slope is estimated as a function of wind speed and azimuth angle relative to the wind direction. Results are compared with those of Cox and Munk (1954a, b). Surface slope estimated by the present method shows narrower distribution and much less directivity relative to the wind direction than that reported by Cox and Munk. It is expected that their data were obtained under conditions of growing wind waves. In general, wind waves are not always developing, and slope distribution might differ from the results of Cox and Munk. Most of our data are obtained in the subtropical seas under clear-sky conditions. This difference of the conditions may be the reason for the difference of slope distribution.

  • PDF

The Characteristics of Visible Reflectance and Infra Red Band over Snow Cover Area (적설역에서 나타나는 적외 휘도온도와 반사도 특성)

  • Yeom, Jong-Min;Han, Kyung-Soo;Lee, Ga-Lam
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.193-203
    • /
    • 2009
  • Snow cover is one of the important parameters since it determines surface energy balance and its variation. To classify snow and cloud from satellite data is very important process when inferring land surface information. Generally, misclassified cloud and snow pixel can lead directly to error factor for retrieval of surface products from satellite data. Therefore, in this study, we perform algorithm for detecting snow cover area with remote sensing data. We just utilize visible reflectance, and infrared channels rather than using NDSI (Normalized Difference Snow Index) which is one of optimized methods to detect snow cover. Because COMS MI (Meteorological Imager) channels doesn't include near infra-red, which is used to produce NDSI. Detecting snow cover with visible channel is well performed over clear sky area, but it is difficult to discriminate snow cover from mixed cloudy pixels. To improve those detecting abilities, brightness temperature difference (BTD) between 11 and 3.7 is used for snow detection. BTD method shows improved results than using only visible channel.

Fog Sensing over the Korean Peninsula Derived from Satellite Observation of MODIS and GOES-9

  • Yoo, Jung-Moon;Jeong, Myeong-Jae;Yoo, Hye-Lim;Rhee, Ju-Eun;Hur, Young-Min;Ahn, Myoung-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.373-377
    • /
    • 2006
  • Seasonal threshold values for fog detection over the ten airport areas in the Korean Peninsula have been derived, using the satellite-observed data of polar-orbit (Aqua/Terra MODIS) and geostationary (GOES-9) during two years. The values are obtained from reflectance at $0.65{\mu}m\;(R_{0.65})$ and the difference in brightness temperature between $3.7{\mu}m\;and\;11{\mu}m\;(T_{3.7-11})$. In order to examine the discrepancy between the threshold values of two kinds of satellites, the following parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul Metropolitan Area. The parameters are the brightness temperature at $3.7{\mu}m\;(T_{3.7})$, the temperature at $11{\mu}m\;(T_{11}$, and $T_{3.7-11}$ for day and night. The $R_{0.65}$ data are additionally included in the daytime. The GOES-9 thresholds over the seven airport areas except the Cheongju airport have revealed the accuracy of 50% in the daytime and 70% in the nighttime, based on statistical verification for the independent samples as follows; FAR, POD and CSI. However, the accuracy decreases in the foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog.

Model Calculation of Total Radiances for KOMPSAT-2 MSC (다목적실용위성 2호 MSC 총복사량의 모델 계산)

  • 김용승;강치호
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.211-218
    • /
    • 2001
  • We have performed the calculation of total radiances for the KOMPSAT-2 Multispectral Camera (MSC) using a radiative transfer model of MODTRAN and examined its results. To simulate four seasonal conditions in the model calculation, we used model atmospheres of mid-latitude winter and summer for calculations of January 15 and July 15, and US standard for April 15 and October 15, respectively. Orbital parameters of KOMPSAT-2 and the seasonal solar zenith angles were taken into account. We assumed that the meteorological range is the tropospheric aerosol extinction of 50 km and surface albedo is the global average of clear-sky albedo of 0.135. MSC contract values are found to be considerably greater in the MSC spectral range than the total radiances calculated with the above general conditions. It is also shown that the spectral behavior of model results with the constant surface albedo differs from the pattern of MSC contract values. From these results, it can be inferred that the forthcoming MSC images would be somewhat dark.

Removal of Super-Refraction Echoes using X-band Dual-Polarization Radar Parameters (X-밴드 이중편파 레이더 변수를 이용한 과대굴절에코 제거)

  • Seo, Eun-Kyoung;Kim, Dong Young
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.9-23
    • /
    • 2019
  • Super-refraction of radar beams tends to occur primarily under a particular vertical structure of temperature and water vapor pressure profiles. A quality control process for the removal of anomalous propagation (AP) ehcoes are required because APs are easily misidentified as precipitation echoes. For this purpose, we collected X-band polarimetric radar parameters (differential reflectivity, cross-correlation coefficient, and differential phase) only including non-precipitation echoes (super-refraction and clear-sky ground echoes) and precipitation echoes, and compared the echo types regarding the relationships among radar reflectivities, polarimetric parameters, and the membership functions. We developed a removal algorithm for the non-precipitation echoes using the texture approach for the polarimetric parameters. The presented algorithm is qualitatively validated using the S-band Jindo radar in Jeollanam-do. Our algorithm shows the successful identification and removal of AP echoes.

Understanding Physical Mechanism of 2022 European Heat Wave (2022년 발생한 기록적인 유럽 폭염 발생의 역학적 원인 규명 연구)

  • Ju Heon Kim;Gun-Hwan Yang;Hyun-Joon Sung;Jung Hyun Park;Eunkyo Seo
    • Atmosphere
    • /
    • v.33 no.3
    • /
    • pp.307-317
    • /
    • 2023
  • This study investigates the physical mechanisms that contributed to the 2022 European record-breaking heatwave throughout May-August (MJJA). The European climate has experienced surface warming and drying in the recent decade (1979~2022) which influences the development of the 2022 European heatwave. Since its spatial pattern resembles the 2003 European heatwave which is a well-known case developed by the strong coupling of near-surface conditions to land surface processes, the 2022 heatwave is compared with the 2003 case. Understanding heatwave development is carried out by the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and daily maximum surface temperature released by NCEP (National Centers for Environmental Prediction) CPC (Climate Prediction Center). The results suggest that the persistent high pressure along with clear sky tends to increase the downward shortwave radiation which leads to enhanced sensible heat flux with the land surface dryness. Terrestrial Coupling Index (TCI), a process-based multivariate metric, is employed to quantitatively measure segmented feedback processes, separately for the land, atmosphere, and two-legged couplings, which appears to the development of the 2022 heatwave, can be viewed as an expression of the recent trends, amplified by internal land-atmosphere interactions.

Characteristics of Environmental Solar Ultraviolet Irradiance

  • Sasaki, Masako;Oyanagi, Takehiko;Takeshita, Shu
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.154-157
    • /
    • 2002
  • Direct, continuous, and accurate measurements of solar ultraviolet irradiance (290-400 nm: UVR) have been carried out since 1990, by using both band-spectral ultraviolet-B (290-320 nm: UV-B) and ultraviolet-A (320-400 nm: UV-A) radiometers at Tokai University in Hiratsuka, Japan (35$^{\circ}$N, 139$^{\circ}$E). From our observations, the following findings are provided: 1) an increasing trend in solar UV -B from Oct. 1990 to Sept. 2000; 2) a regional comparison of solar UVR in Japan; 3) the distinct characteristics of UV-B and UV-A irradiance, such as diffuse property, daily and seasonal variation; and 4) human body protection against solar UVR. An increasing 10-year trend in global solar UV - B in Hiratsuka corresponded to a decrease in the total ozone amount measured at Tsukuba (36$^{\circ}$N, 140$^{\circ}$E), giving supportive evidence for a direct link between these two parameters. Furthermore, a strong correlation was found between solar UV-B and total ozone amount from results of UVR measurements at four Tokai University monitoring stations dispersed throughout Japan. Additional results revealed different diffuse properties in global solar UV and in global solar total (300-3000 nm: Total) irradiances. For example, in the global UVR, the diffuse component was dominant: about 80 % independent of weather, with more than 60 % of global UV-B, and more than 50% of global UV-A with even a cloudless clear sky. On the other hand, the portion of the diffuse in the global total irradiance was very low, less than 10 % on a cloudless clear day. Daily and seasonal variations of UV -B and UV -A irradiances were found to be quite different, because of the marked dependence of UV -B irradiance on the atmospheric ozone amount. Moreover, UV -B irradiance showed large daily and seasonal variations: the ratio between maximum and minimum irradiances was more than 5. In contrast, the variation in UV-A was small: the ratio between maximum and minimum was less than 2. Three important facts are proposed concerning solar UVR protection of the human body: 1) the personal minimal erythema dose (MED); 2) gender based difference in MED values; and 3) proper colors for UVR protective clothing.

  • PDF

Cloud Detection Using HIMAWARI-8/AHI Based Reflectance Spectral Library Over Ocean (Himawari-8/AHI 기반 반사도 분광 라이브러리를 이용한 해양 구름 탐지)

  • Kwon, Chaeyoung;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.599-605
    • /
    • 2017
  • Accurate cloud discrimination in satellite images strongly affects accuracy of remotely sensed parameter produced using it. Especially, cloud contaminated pixel over ocean is one of the major error factors such as Sea Surface Temperature (SST), ocean color, and chlorophyll-a retrievals,so accurate cloud detection is essential process and it can lead to understand ocean circulation. However, static threshold method using real-time algorithm such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Himawari Imager (AHI) can't fully explained reflectance variability over ocean as a function of relative positions between the sun - sea surface - satellite. In this paper, we assembled a reflectance spectral library as a function of Solar Zenith Angle (SZA) and Viewing Zenith Angle (VZA) from ocean surface reflectance with clear sky condition of Advanced Himawari Imager (AHI) identified by NOAA's cloud products and spectral library is used for applying the Dynamic Time Warping (DTW) to detect cloud pixels. We compared qualitatively between AHI cloud property and our results and it showed that AHI cloud property had general tendency toward overestimation and wrongly detected clear as unknown at high SZA. We validated by visual inspection with coincident imagery and it is generally appropriate.