• 제목/요약/키워드: Clear sky

검색결과 207건 처리시간 0.031초

FOG DETECTION OVER THE KOREAN PENINSULA DERIVED FROM SATELLITE OBSERVATIONS OF POLAR-ORBIT (MODIS) AND GEOSTATIONARY (GOES-9)

  • Yoo, Jung-Moon;Jeong, Myeong-Jae;Yoo, Hye-Lim;Rhee, Ju-Eun;Hur, Young-Min;Ahn, Myoung-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.664-667
    • /
    • 2006
  • Seasonal threshold values for fog detection over the ten airport areas in the Korean Peninsula have been derived, using the satellite-observed data of polar-orbit (Aqua/Terra MODIS) and geostationary (GOES-9) during two years. The values are obtained from reflectance at 0.65 ${\mu}m$ $(R_{0.65})$ and the difference in brightness temperature between 3.7 ${\mu}m$ and 11 ${\mu}m$ $(T_{3.7-11})$. In order to examine the discrepancy between the threshold values of two kinds of satellites, the following parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul Metropolitan Area. The parameters are the brightness temperature at 3.7 ${\mu}m$ $(T_{3.7})$, the temperature at 11 ${\mu}m$ $(T_{11})$, and $T_{3.7-11}$ for day and night. The $R_{0.65}$ data are additionally included in the daytime. The GOES-9 thresholds over the nine airport areas except the Cheongju airport have revealed the accuracy of 60% in the daytime and 70% in the nighttime, based on statistical verification as follows; FAR, POD and CSI. However, the accuracy decreases in the foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog.

  • PDF

시가지내 산악경관의 시점 높이별 조망 특성 - 청주시 우암산을 대상으로 - (The View Character of Mountainscape of a City according to Visual Point Level - In a Case of Mt. Uam -)

  • 정정섭;권상준;조태동
    • 한국환경과학회지
    • /
    • 제13권6호
    • /
    • pp.497-503
    • /
    • 2004
  • In this research, we have performed a T-test to see how the relationship between dependent variable or visual point level and independent variable or visual quantity is in order to clear up the correlation between pattern of visual point and visual quantity by the constituents of a view from a different visual point level and the results are as follows: 1) In case of the character of Mt. Uam landscape of the city, Uamsan is set as a fixed point and about a direction of view(D), the north is a datum point from which the range of direction is distributed within 1800 westwardly and the visual range(R) is also within 2000m. An elevation is an average of 7.40 and the average story of the buildings is 3.85. Here the height of a story is about 4m so the average of the visual point difference is estimated at 15.4m. 2) The type of visual point is divided into the intersection group and the front of the highly used public buildings group. Double intersection types account for about 78.80%(52 spots) which forms a majority part of LCP. 3) The analysis of the difference of visual point level divided by eye level and that of the top of the buildings has been proved that there's a sharp difference resulted from t-test at 1 % significant level. The significant difference of elevation from height difference(l5.93m), however, has not been shown. 4) From the result of T-test about visual quantity by the elements of a view from a different visual point level, the visual quantity of mountain(VQM), sky(VQS), ground(VQG) is significant at about 1% each and that of building(VQB) is at about 5%. The difference in visual quantity of a mountain by the visual point level is at about 4% which can meet a marginal level of LCP necessary for evaluation of mountainscape.

Evaluation of Vertical Ozone Profiles from Ozonesonde over Pohang, Korea against coinciding HALOE datasets

  • Hwang, Seung-Hyun;Sohn, Byung-Ju
    • 한국지구과학회지
    • /
    • 제27권7호
    • /
    • pp.778-786
    • /
    • 2006
  • In Korea, the ozone profiles have been acquired by using ozonesonde at Pohang station of the Korea Meteorological Administration (KMA) since 1995. These ozone soundings were performed at 0500 UTC on a weekly basis (every Wednesday) in a clear sky. The ozonesonde is equipped with the model 5A ECC sensor, which is one of the most common ozonesonde systems. There have been no attempts to evaluate the Pohang ozonesonde profiles compared with satellite. This paper will provide the first evaluation results for the ozonesonde profiles against HALogen Occultation Experiment (HALOE) measurements over Korea. During 1995-2004 periods, a total of 450 and 188 ozone profiles were obtained from the ozonesonde measurements from HALOE measurements over Korea, respectively. Hence, a total of 34 coincident profile pairs are extracted. Among those total profiles, 26 profiles from ozonesonde are compared against nearly coincident HALOE measurements in time and space. For ozone profiles, the results of statistical analyses showed that the best agreement between two measurements occurs in the 20-25 km and 30-35 km region, where the mean and RMS percent differences are less than ${\pm}5$ and 14%, respectively. For temperature profiles, the mean and RMS percent differences in 20-25 km region are estimated to be about -0.1 and 1.7%, respectively. According to the scatter plots between two measurements, ozone data are strongly correlated each other above 20 km altitude range with more than 0.8 correlation coefficients. It is found that the altitude (pressure level) differences between two measurements would mainly lead to the discrepancy (over 40% below 18 km) below 20 km in ozone profiles.

MTSAT 적외채널과 AMSR 마이크로웨이브채널의 결합을 이용한 한반도 주변의 해무 탐지 (Detection of Sea Fog by Combining MTSAT Infrared and AMSR Microwave Measurements around the Korean peninsula)

  • 박형민;김재환
    • 대기
    • /
    • 제22권2호
    • /
    • pp.163-174
    • /
    • 2012
  • Brightness temperature (BT) difference between sea fog and sea surface is small, because the top height of fog is low. Therefore, it is very difficult to detect sea fog with infrared (IR) channels in the nighttime. To overcome this difficulty, we have developed a new algorithm for detection of sea fog that consists in three tests. Firstly, both stratus and sea fog were discriminated from the other clouds by using the difference between BTs $3.7{\mu}m$ and $11{\mu}m$. Secondly, stratus occurring at a level higher than sea fog was removed when the difference between cloud top temperature and sea surface temperature (SST) is smaller than 3 K. In this process, we used daily SST data from AMSR-E microwave measurements that is available even in the presence of cloud. Then, the SST was converted to $11{\mu}m$ BT based on the regressed relationship between AMSR-E SST and MTSAT-1R $11{\mu}m$ BT at 1733 UTC over clear sky regions. Finally, stratus was further removed by using the homogeneity test based on the difference in cloud top texture between sea fog and stratus. Comparison between the retrievals from our algorithm and that from Korea Meteorological Administration (KMA) algorithm, shows that the KMA algorithm often misconceived sea fog as stratus, resulting in underestimating the occurrence of sea fog. Monthly distribution of sea fog over northeast Asia in 2008 was derived from the proposed algorithm. The frequency of sea fog is lowest in winter, and highest in summer especially in June. The seasonality of the sea fog occurrence between East and West Sea was comparable, while it is not clearly identified over South Sea. These results would serve to prevent the possible occurrence of marine accidents associated with sea fog.

MODIS 적외채널 배경 밝기온도차를 이용한 동북아시아 황사 탐지 (Detection of Yellow Sand Dust over Northeast Asia using Background Brightness Temperature Difference of Infrared Channels from MODIS)

  • 박주선;김재환;홍성재
    • 대기
    • /
    • 제22권2호
    • /
    • pp.137-147
    • /
    • 2012
  • The technique of Brightness Temperature Difference (BTD) between 11 and $12{\mu}m$ separates yellow sand dust from clouds according to the difference in absorptive characteristics between the channels. However, this method causes consistent false alarms in many cases, especially over the desert. In order to reduce these false alarms, we should eliminate the background noise originated from surface. We adopted the Background BTD (BBTD), which stands for surface characteristics on clear sky condition without any dust or cloud. We took an average of brightness temperatures of 11 and $12{\mu}m$ channels during the previous 15 days from a target date and then calculated BTD of averaged ones to obtain decontaminated pixels from dust. After defining the BBTD, we subtracted this index from BTD for the Yellow Sand Index (YSI). In the previous study, this method was already verified using the geostationary satellite, MTSAT. In this study, we applied this to the polar orbiting satellite, MODIS, to detect yellow sand dust over Northeast Asia. Products of yellow sand dust from OMI and MTSAT were used to verify MODIS YSI. The coefficient of determination between MODIS YSI and MTSAT YSI was 0.61, and MODIS YSI and OMI AI was also 0.61. As a result of comparing two products, significantly enhanced signals of dust aerosols were detected by removing the false alarms over the desert. Furthermore, the discontinuity between land and ocean on BTD was removed. This was even effective on the case of fall. This study illustrates that the proposed algorithm can provide the reliable distribution of dust aerosols over the desert even at night.

조명 소프트웨어를 이용한 추적식 디쉬형 집광기의 배광분포 분석 및 자연채광 성능 예측 (Analysis on Candela Distribution Curve of a Tracking Dish Concentrator and Daylighting Prediction using Lighting Programs)

  • 오승진;한현주;신상웅;천원기
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.457-462
    • /
    • 2012
  • Daylighting software is an important component to predict the performance of daylighting system in advance of a field demonstration study with installing them in buildings. PHOTOPIA is a powerful software to generate a candela distribution curve(CDC) of an active daylighting system like a tracking dish concentrator. With PHOTOPIA, a set of candela distribution curves was generated under clear sky conditions and different solar altitude angles. The candela distribution curves were then imported to RADIANCE for rendering and analysis on the daylighting performance of a tracking dish concentrator when it installed in a actual class room without windows. As a result, the daylight collection efficiency of the dish concentrator was 68.4% when we assumed that there was no tracking error. It was found that candela(cd) and total lumens(lm) increased with solar altitude rising, whereas the distribution angle was fixed. The illuminance uniformity on the work plane in the class room was relatively low, 0.12, while the illuminance uniformity on the area of $2.7m^2$ to which the light was illuminated was considerably high, 0.60. The maximum illuminance was 1,340lux with a solar altitude angle of 80 degrees.

  • PDF

Photopia를 이용한 추적식 디쉬형 집광기의 배광분포 분석 및 자연채광 성능 예측 (A Computational Analysis on Candela Distribution Curves and Performance Prediction of a Fiber Optic Dish Daylighting System by Photopia)

  • 오승진;한현주;전영일;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.104-113
    • /
    • 2012
  • A set of candela distribution curves(CDCs) were generated for a fiber optic dish daylighting system by Photopia under clear sky conditions at different solar altitudes. The candela distribution curves were then exported to Radiance for photometric analysis of a windowless lecture room. Observations were made on the Radiance rendered illuminance images, which provided photo realistic scenes varying with solar altitudes. If no tracking error were assumed, the daylight collection efficiency of the system remained at a constant value of 68.4% during its operation. Higher the solar altitude angle, greater in photometric quantities were observed, which are represented by candela(cd) and total lumens(lm). In all cases considered, however, the angle of light distribution remained fixed reflecting the solar tracking feature of the system. The illuminance uniformity on the workplane lingered around 0.12, which is quite low. This is quite a contrast to its average value of 0.68 of the $2.7m^2$ area directly below the terminal device (diffuser) of the system. The maximum illuminance of 1,340lux was obtained at a solar altitude of 80 degrees.

Unbiased spectroscopic study of the Cygnus Loop with LAMOST

  • Seok, Ji Yeon;Koo, Bon-Chul;Zhao, Gang
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.44.1-44.1
    • /
    • 2018
  • We present a spectroscopic study of the Galactic supernova remnant (SNR) Cygnus Loop using the fifth Data Release (DR5) of LAMOST. The LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) features both a large field-of-view (about 20 deg2) and a large aperture (~4 m in diameter), which allow us to obtain 4000 spectra simultaneously. Its wavelength coverage ranges from ${\sim}3700{\AA}$ to $9000{\AA}$ with a spectral resolution of $R{\approx}1800$. The Cygnus Loop is a prototype of middle-aged SNRs, which has advantages of being bright, large in angular size (${\sim}3.8^{\circ}{\times}3^{\circ}$), and relatively unobscured by dust. Along the line of sight of the Cygnus Loop, 2747 LAMOST DR5 spectra are found in total, which are spatially distributed over the entire remnant. Among them, 778 spectra are selected based on the presence of emission lines (i.e., [O III]${\lambda}5007$, Ha, and [S II]${\lambda}{\lambda}$ 6717, 6731) for further visual inspection. About half of them (336 spectra) show clear spectral features to confirm their association with the remnant, 370 spectra show stellar features only, and 72 spectra are ambiguous and need further investigation. For those associated with the remnant, we identify emission lines and measure their intensities. Spectral properties considerably vary within the remnant, and we compare them with theoretical models to derive physical properties of the SNR such as electron density and temperature, and shock velocity. While some line ratios are in good agreement with model prediction, others cannot be explained by simple shock models with a range of shock velocities. We discuss these discrepancies between model predictions and the observations and finally highlight the powerfulness of the LAMOST data to investigate spatial variations of physical properties of the Cygnus Loop.

  • PDF

역궤적 이동경로별 용인지역의 컬럼에어로졸 특성 (Columnar Aerosol Properties at Yongin According to Transport Paths of Back Trajectories)

  • 박지수;최용주;김영성
    • 한국대기환경학회지
    • /
    • 제33권2호
    • /
    • pp.97-107
    • /
    • 2017
  • Columnar aerosol properties retrieved from solar radiation were investigated at the Yongin (YGN) SKYNET site over seven years from October 2008 to October 2015. Hourly averages were calculated when the data were available, and back trajectories were calculated to examine the effects of regional transport. Data recovery rate was low at 6.6%, primarily because solar radiation was measured only under daytime clear-sky conditions. Mean values of the fine-mode volume fraction (FMVF) as well as its seasonal variation were similar to those of $PM_{2.5}/PM_{10}$ although the coarse-mode fraction of column aerosols tended to be slightly larger. The values of single scattering albedo (SSA) and FMVF were lower in spring due to the effects of mineral dust, and higher in summer due to secondarily-formed inorganic ions. Back trajectories were grouped into five clusters according to the directions of transport paths. Aerosol loading was highest for Cluster 2 from the northwest, but SSA and FMVF were not particularly high or low because aerosols were composed of various materials with different properties. Aerosol loading was lowest for Cluster 5 from the Pacific Ocean passing through the south end of Japan, whose SSA and FMVF were highest as secondarily-formed inorganic ions were mixed.

지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성 (Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS)

  • 이병일;손은하;오미림;김윤재
    • 대기
    • /
    • 제19권4호
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.