• Title/Summary/Keyword: Cleanroom

Search Result 53, Processing Time 0.032 seconds

Zoning Method to Predict Contaminant Sources in Turbulent-Type Cleanroom (난류형 클린룸에서 영역분할법을 이용한 오염원 추정에 관한 연구)

  • Kim, D.K.;Sung, H.G.;Han, S.M.;Hwang, Y.K.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.253-260
    • /
    • 2015
  • Particle contamination in a cleanroom is very complex with a complicated process and several pieces of spreading equipment. Detailed information on the locations of the contamination sources and the path of the contamination is needed for economical and efficient control of the contaminant particles in such a cleanroom. An allocation method was developed to quantitatively predict the contamination generated from the pollution sources. In this paper, we propose a zoning method to accelerate the computation time for estimating the contributions. Our results showed that we can quantitatively estimate the amount of contamination generated from pollution sources.

Method of Particle Contamination Control for Yield Enhancement in the Cleanroom (클린룸 제조공정에서 수율개선을 위한 입자오염제어 방법)

  • Noh, Kwang-Chul;Lee, Hyeon-Cheol;Kim, Dae-Young;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.522-530
    • /
    • 2007
  • The practical studies on the method of particle contamination control for yield enhancement in the cleanroom were carried out. The method of the contamination control was proposed, which are composed of data collection, data analysis, improvement action, verification, and implement control. The partition check method and the composition analysis for data collection and data analysis were respectively used in the main board and the cellular phone module production lines. And these methods were evaluated by the variation of yield loss between before and after improvement action. In case that the partition check method was applied, the critical process step was selected and yield loss reduction through improvement actions was observed. While in case that the composition analysis was applied, the critical sources were selected and yield loss reduction through improvement actions was also investigated. From these results, it is concluded that the partition check and the composition analysis are effective solutions for particle contamination control in the cleanroom production lines.

Characteristics of Particle Deposition onto Cleanroom Wall Panel for Varying Particle Charging Rates (입자하전량에 따른 클린룸 수직벽체로의 입자침착 특성)

  • Kim, Jong-Jun;Noh, Kwang-Chul;Sung, Sang-Chul;Baek, Sun-Ho;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.725-730
    • /
    • 2008
  • In this study, we found out charged particle's deposition characteristic by experiments of $0.5{\mu}m$, $1.0{\mu}m$, $3.0{\mu}m$ size particle's concentration decay. We carried out the experiments on charged particle deposition onto the vertical cleanroom wall panel and some other fundamental experiments. The particle deposition mechanism is consist of sedimentation, convection, diffusion, thermophoresis, electrostatic and so on. Particle size determines mainly working deposition mechanism. The charged particle is made with corona discharge that are constituted field charging and diffusion charging. In addition, this combinational mechanism is called combined charging. The type of corona discharge determines quantity of particle electrical charge. In conclusion, we assumed that quantity of particle electrical charge accelerations deposition velocity onto the vertical cleanroom wall panel and proved it. And we figured out particle's deposition characteristic through compared between our experiment's results.

  • PDF

Improving Vertical Airflow Uniformity Considering the Structures of the Lower Plenum in a Cleanroom (하부 플레넘 구조물 조건을 고려한 클린룸의 편류 개선 방법)

  • Kim, Young-Sub;Ha, Man-Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.17-25
    • /
    • 2008
  • To achieve the unidirectional airflow in a cleanroom, we need to predict accurately the static pressure losses at the lower plenum and to control properly the opening pressure ratio of access floor panels based on these pressure losses. At first, the present study proposed a correlation to predict the velocity distribution at the lower plenum, because the accuracy to predict pressure losses at the lower plenum depends on how to calculate the velocity correctly against the inner structures at the lower plenum. In the second place, this study proposed correlations which considered the effect of inner structures such as columns, ducts and equipments at the lower plenum on pressure losses. In order to test the accuracy of these correlations, we compared air flow patterns before regulating the opening ratio of access floor with those after regulating. Results after regulating the opening ratio of access floor show good unidirectional uniform airflow pattern. So the present method can be used as an important tool to control the air flow in a cleanroom.

A Numerical Analysis on the Airflow Characteristics in Super Cleanrooms with Different Design Types (초청정 클린룸 공조방식에 따른 기류특성에 관한 수치해석)

  • 노광철;이승철;오명도
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.751-761
    • /
    • 2003
  • We performed the numerical analysis on the airflow characteristics in the two type of cleanroom systems, which are the axial fan type (AFT) and the fan filter unit (FFU). A computational fluid dynamic model was applied to investigate and compare the nonuniformity, the deflection angle and the air ventilation effectiveness of the two designs of cleanrooms when dampers are adjusted and not adjusted. And the flow-resistance models of the various components were used in this simulation. We know that the airflow characteristics of the cleanrooms are largely affected by damper adjusting And we also find out that the FFU system is superior to the AFT system through the comparison of the cleanroom performance indices.

Advancement of Sequential Particle Monitoring System (측정점 교환방식 미세입자 모니터링 시스템 고도화)

  • An, Sung Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.17-21
    • /
    • 2022
  • In the case of the manufacturing industry that produces high-tech components such as semiconductors and large flat panel displays, the manufacturing space is made into a cleanroom to increase product yield and reliability, and various environmental factors have been managed to maintain the environment. Among them, airborne particle is a representative management item enough to be the standard for actual cleanroom grade, and a sequential particle monitoring system is usually used as one parts of the FMS (Fab or Facility monitoring system). However, this method has a problem in that the measurement efficiency decreases as the length of the sampling tube increases. In this study, in order to solve this problem, a multiple regression model was created. This model can correct the measurement error due to the decrease in efficiency by sampling tube length.

Thermoregulatory Responses of Differently Designe Cleanroom Garments (고청정 작업환경에서 방진복 디자인이 인체 생리반응에 미치는 영향)

  • 이윤정;정찬주;정재은
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.6
    • /
    • pp.811-820
    • /
    • 2002
  • The physical responses and subjective sensations of different cleanroom garments were compared in order to discover which cleanroom garment design could minimize pollution of the working environment by dust from the worker, maintain a pleasant microclimate and provide effective thermoregulation. A. Coverall with non-detachable hood, kimono sleeves (front), raglan sleeves (back), raschell net on the bodice B. Coverall with detachable hood, kimono sleeves (front), raglan sleeves (back), raschell net on the bodice C. Separate top with non-detachable hood, kimono sleeves (front), raglan sleeves (back), raschell net on the bodice D. Coverall with non-detachable hood, set-in sleeves, raschell net on the bodice E. Coverall with non-detachable hood, raglan sleeves (back), l00% cotton inner wear (upper body) The results of the experiment were as follows. Because the hood covered the shoulder and the chest areas, the chests temperature of the worker wearing garment E was quite higher than those wearing other garment designs. For fabric that has been coated in order to prevent dust, layered designs should be avoided in order to prevent skin temperature from rising. Compared with layers of underwear, it would be more effective to attach a see-through raschell net which clings to the body. Thermal sensations were also highest in garment E, reinforcing the finding that layered designs should be avoided. Through the experiment, it was found that a new material coverall with a non-detachable hood was effective in minimizing dust, suppressing skin temperature increases, maintaining a superior microclimate and providing pleasant subjective sensations.

A Study on Energy Reduction in an Outdoor Air Conditioning System for Semiconductor Manufacturing Cleanrooms Using Water Spray Humidification (반도체 클린룸용 외기공조시스템의 수분무 가습을 이용한 에너지절감에 관한 연구)

  • Song, Won-Il;Kim, Ki-Cheol;Yoo, Kyung-Hoon;Shin, Dae-Kun;Tae, Kyung-Eung;Kim, Yong-Sik;Park, Dug-Jun
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.65-77
    • /
    • 2017
  • In recent large-scale semiconductor manufacturing cleanrooms, the energy consumption in outdoor air conditioning (OAC) systems to heat, humidify, cool and dehumidify outdoor air(OA) represents about 40~50 % of the total cleanroom power consumption required to maintain cleanroom environment. Therefore, the assessment of energy consumption in outdoor air conditioning systems is essential for reducing the outdoor air conditioning load for a cleanroom. In the present study, an experiment with an outdoor air flow rate of $1,000m^3/h$ was conducted to compare the energy consumption in steam humidification, simple air washer, exhaust air heat recovery type air washer and dry cooling coil(DCC) return water heat recovery type air washer OAC systems. Besides, a numerical analysis was carried out to evaluate the annual energy consumption of the aforementioned four OAC systems. It was shown that the simple air washer, exhaust air heat recovery type air washer and DCC return water heat recovery type air washer OAC systems using water spray humidification were more energy-efficient than the steam humidification OAC system. Furthermore the DCC return water heat recovery type air washer OAC system was the most energy-efficient.