• Title/Summary/Keyword: Cleaning Agent

Search Result 122, Processing Time 0.021 seconds

Development of Cleaning Agents for Solar Silicon Wafer (태양광 실리콘 웨이퍼 세정제 개발)

  • Bae, Soo-Jeong;Lee, Ho-Yeoul;Lee, Jong-Gi;Bae, Jae-Heum;Lee, Dong-Gi
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • Cleaning procedure of solar silicon wafer, following ingot sawing process in solar cell production is studied. Types of solar silicon wafer can be divided into monocrystalline or multicrystalline, and slurry sawn wafer or diamond sawn wafer according to the ingot growing methods and the sawing methods, respectively. Wafer surface and contaminants can vary with these methods. The characterisitics of contaminants and wafer surface are investigated for each cleaning substrate, and appropriate cleaning agents are developed. Physical properties and cleaning ability of the cleaning agents are evaluated in order to verify the application in the industry. The wafers cleaned with the cleaning agents do not show any residual contaminants when analyzed by XPS and regular patterns are formed after texturization. Furthermore, the cleaning agents are applied in the production industry, which shows superior cleaning results compared to the existing cleaning agents.

Preparation and Cleaning Properties of Environmental Friendly Semi-Solvent Cleaning Agents (친환경 준용매계 세정제의 제조와 그 세정 특성)

  • Kang, Doo Whan;Ha, Soonhyo;Han, Jongpil;Lee, Byoung Chul;Yeo, Hak Gue;Bae, Jang Soon;Yeum, Kou-Sul
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.188-193
    • /
    • 2007
  • Semi-solvent type cleaning agents were prepared by mixing naphthenes, natural terpene oil, surfactant and water, and measured their physical properties. And also, cleaning efficiency for flux and grease was measured by gravimetric method. By measuring the physical properties, pH for cleaning agents were 6.0~6.7, surface tension, 27.4~28.4 dyne/cm, and wetting index, 8.65~12.46 (with water), 11.99~17.43 (without water). The cleaning agent composed of naphthene, 30 wt%, natural terpene oil, 45 wt%, surfactant, 13 wt%, co-surfactant, 12 wt%, and water, 0 wt% had the largest wetting index, and shown the most effective cleaning properties for flux (98.66%) and grease (93.44%). The conductivity with $0.5{\sim}0.9{\mu}s/cm$ to the cleaning agent containing small amount of water was found to form W/O type microemulsion.

Experimental Study of Removing Surface Corrosion Products from Archaeological Iron Objects and Alternating Iron Corrosion Products by Nd:YAG Laser Cleaning System (Nd:YAG 레이저를 이용한 철제유물의 표면부식물 제거 및 성분 변화 연구)

  • Lee, Hye Youn;Cho, Nam Chul;Lee, Jong Myoung;Yu, Jae Eun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.353-360
    • /
    • 2012
  • The corrosion product of archaeological iron objects is supposed to be removed because it causes re-corrosion. So far it is removed by scapel and sand blaster but they depend on the skill and experience of a conservator and the glass-dust of the sand blaster is harmful to humans. Therefore this study applies a laser cleaning system which is used in various industrial cleaning processes, to remove corrosion product from archaeological iron objects. In addition, this work studies the alternation of corrosion product after laser irradiation, which evaluates the reliability of the laser cleaning system. Optical microscopy, SEM-EDS, XRD, Raman have been used to observe and analyse the surface of the objects. The results show the capacity of laser cleaning some corrosion product, but blackening appears with increasing pulses and laser energy, and some corrosion products, goethite and hematite, are partially altered to magnetite. These problems, blackening and alternation of corrosion product, should be solved by further studies which find the optimal laser irradiation condition and use a wetting agent.

De-Ash Characteristics using a Cleaning Agent KOH of CDPF for PM Reduction of Diesel Engines

  • Seo, Choong-Kil
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • The objective of this study is to investigate the physicochemical properties of the catalysts and the feasibility of remanufacturing them after removing ash in CDPF using a cleaning agent KOH. Compared with the carbon oxidation ability of fresh CDPF, that of de-ashed CDPF had an insignificant difference due to the low activation energy of CO and $CO_2$. As ash deposited in CDPF was de-ashed with KOH, it had a practical feasibility on remanufacturing point of view, but washcoat was melted about 26%. Further studies were required for the prevention of washcoat loss.

Physical Properties and Cleaning Ability of New Cleaning Agents Based on 2,2,2-trifluoroethanol (TFEA) (2,2,2-trifluoroethanol (TFEA)를 기초로한 세정제의 물성 및 세정성 영향 연구)

  • Cha, An Jung;Park, Ji Na;Kim, Honggon;Bae, Jae Heum
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.533-541
    • /
    • 2005
  • Non-aqueous cleaning agents were formulated with 2,2,2-trifluoroethanol (TFEA) and hydrofluoroether (HFE), and their physical properties and cleaning abilities were examined. TFEA-based aqueous cleaning agents were also formulated with nonionic surfactants, hydrotropes and builders, and their cleaning abilities were compared. Possibilities of these cleaning agents as substitutes for CFC-113 and 1,1,1-TCE were finally evaluated. In this work, fluxes, cutting oils, greases, and fluoric oils were selected as model contaminants for cleaning experiments. These contaminants have different properties of water-solubility or hydrophilicity, and fat-solubility or lypophilicity. Cleaning abilities of TFEA-based cleaning agents were analyzed and compared through the measurement of contaminant weight changes as a function of cleaning time, and their possibilities as alternative cleaning agents were evaluated. As a result, it was shown that TFEA and HFE-based non-aqueous cleaning agents have quite a good cleaning power for fluxes and fluorine soils but low one for greases. And TFEA-based agueous cleaning agents which consisted of nonionic surfactants, hydrotrope, and builders were very effective for cleaning fluxes and greases under certain formulation conditions. Thus, it was revealed that the TFEA-based cleaning agents were very effective for cleaning specific contaminants and can be used as substitutes for CFC-113 and 1,1,1-TCE in some industrial applications.

Formulation of Alternative Non-Aqueous Cleaning Agents to Chlorofluorocarbon Compounds for Cleaning Flux, Solder and Grease (Flux, Solder 및 Grease 세정용 CFC 대체 비수계 세정제 배합 연구)

  • Jung, Young Woo;Lee, Ho Yeoul;Lee, Myoung Jin;Song, Ah Ram;Bae, Jae Heum
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.250-258
    • /
    • 2006
  • CFC compounds such as CFC-113 and 1,1,1-TCE, etc. have been used in various industries due to their excellent chemical stability, thermodynamic characteristics, non-inflammability and anti-corrosiveness. However, in oder to protect the earth environment, "the Montreal Protocol on substances that deplete the ozone layer" was adopted in 1989 for prevention of production and utilization of these CFC compounds and alternative cleaning agent have been required in the industry. The objective of this study is to develop non-aqueous cleaning agents that do not require major change of cleaning system, have excellent cleaning efficiency, are favorable to the environment, are harmless to the human body, and are not generated corrosive materials. In this work, non-aqueous cleaning agents have been formulated with glycol ether series and paraffinic hydrocarbon series with siloxane, and their physical properties and cleaning efficiencies were analyzed and compared with those of regulated materials. As a result of physical properties measurement of the formulated cleaning agents, it is expected that they may have good penetration ability into contaminated materials due to their properties with low density and low surface tension. Measurement of flash point and vapor pressure of the cleaning agents will be helpful for evaluation of their safety and working environment. The experimental results of cleaning flux, solder and grease by the formulated cleaning agents show that their cleaning abilities of soils were good and that there were no residues on the substance after cleaning. Therefore, alternative cleaning agents which have equivalent cleaning ability to regulating materials, good penetration ability and low hazard to human body, have been developed in this work.

  • PDF

Preparation and Analysis of Alkaline Powder Cleaning Agents for Steel (철강용 알칼리 분말세정제의 제조 및 세정해석)

  • Lee, Ae-Ri;Chung, Dong-Jin;Park, Hong-Soo;Im, Wan-Bin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.283-288
    • /
    • 2003
  • Alkaline powder cleaning agents (APCAs) were prepared by blending of $Na_2CO_3$ tetrasodium pyrophosphate (TSPP). sodium orthosilicate (Na-OSi), Na-dioctyl sulfosuccinate (303C), Demol C, and MJU-100A (100A). The physical properties of APCAs tested with steel specimen showed the following results. The cleaning powers of APCA-6 ($Na_2CO_3$ 250g/TSPP 70g/Na-OSi 40g/303C 60g/Demol C 50g/100A 30g mixture) for press-rust preventing oil was 97% and 98% degreasing at 2wt%, $70^{\circ}C$ and $90^{\circ}C$, respectively; for Quenching oil, the cleaning power of APCA-6 was 95% degreasing at 2wt% and $70^{\circ}C$. From the results, it was ascertained that APCA-6 exhibited a good cleaning power. Also low foaming power tests proved that the APCA-6 maintained good defoaming effect.