• Title/Summary/Keyword: Clean Technology

Search Result 2,332, Processing Time 0.028 seconds

Optimization of Reaction Conditions for the High Purity Hydrogen Production Process Using By-Product Gases in Steel Works (철강산업 부생가스를 이용한 고순도 수소 제조 공정의 반응 조건 최적화)

  • CHOI, HANSEUL;KIM, JOONWOO;KIM, WOOHYOUNG;KIM, SUNGJOONG;KOH, DONGJUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.621-627
    • /
    • 2016
  • Low-priced hydrogen is required in petrochemical industry for producing low-sulfur oil, and upgrading low-grade crude oil since environmental regulations have been reinforced. Steel industry can produce hydrogen from by-product gases such as Blast Furnace Gas (BFG), Coke Oven Gas (COG), and Linze Donawitz Gas (LDG) with water gas shift (WGS) reaction by catalysis. In this study, we optimized conditions for WGS reaction with commercial catalysts by BFG and LDG. In particular, the influence on activity of gas-hourly-space-velocity, and $H_2O/CO$ ratios at different temperatures were investigated. As a result, 99.9%, and 97% CO conversion were showed with BFG, and LDG respectively under $350^{\circ}C$ High Temperature Shift (HTS), $200^{\circ}C$ Low Temperature Shift (LTS), 3.0 of $H_2O/CO$, and $1500h^{-1}$ of GHSV. Furthermore, 99.9% CO conversion lasted for 250 hours with BFG as feed gas.

CO2 PSA Process using Double-Layered Adsorption Column (이단 적층 흡착탑을 이용한 CO2 PSA 공정)

  • Lee, Hwaung;Choi, Jae-Wook;Song, Hyung Keun;Na, Byung-Ki
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.51-63
    • /
    • 2001
  • In this study, PSA, known as the most economic process, was used to recover $CO_2$ from the power-plant flue gas. Activated carbon and zeolite molecular sieve 13X were used as adsorbent. Activated carbon has been deemed inadequated adsorbent for separating $CO_2$ from the flue gas. However, highly concentrated $CO_2$ could be obtained as a product on the activated carbon adsorbent using the new operating cycle modifying the rinse step. Also, the recovery of $CO_2$ was improved using double-layered adsorption column packed with the activated carbon and the zeolite 13X simultaneously. Adsorption column was filled with the activated carbon in the feed-end side, and the zeolite 13X in the product-end side. The recovery of $CO_2$ increased about 40% with only 25% zeolite, and increased 67% with 50% zeolite at the experimental conditions of 13% $CO_2$ concentration, 10 SLPM flow rate and 2.2 atm adsorption pressure.

  • PDF

Clean mobile robot for wafer transfer (Wafer 낱장 반송용 이동 로봇의 개발)

  • 성학경;이성현;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.161-161
    • /
    • 2000
  • The clean mobile robot for wafer transfer is AGV that carry each wafer to each equipment. It has wafer handling technology, wafer ID recognition technology, position calibration technology using vision system, and anti-vibration technology. Wafer loading/unloading working accuracy is within ${\pm}$1mm, ${\pm}$3$^{\circ}$. By application of this AGV, we can reduce the manufacturing tack time and bring cost down of equipment.

  • PDF

HACCP의 환경 최적화를 위한 식품 클린룸 설계에 관한 연구

  • Won, Yeong-Jae
    • Air Cleaning Technology
    • /
    • v.23 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • This study proposed the optimum design values for the biological clean room system observing the regulations of Hazard Analysis Critical Control Point (HACCP). Even though the standard for industrial clean room system has been well established, the basis for biological food clean room system is the first stage. In order to prevent the contaminations in advance for food storages, processes, and distributions, the criterion of Hazard Analysis Critical Control Point is positively required. This study also suggested the possible ways of how to avoid the hazardous contaminations.

  • PDF

Electrolytic Hydrogen Production Using Solution Processed CIGS thin Film Solar Cells (용액 공정 CIGS 박막 태양 전지를 이용한 물 분해 수소 생산)

  • Jeon, Hyo Sang;Park, Se Jin;Min, Byoung Koun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.282-287
    • /
    • 2013
  • Hydrogen production from water using solar energy is attractive way to obtain clean energy resource. Among the various solar-to-hydrogen production techniques, a combination of a photovoltaic and an electrolytic cell is one of the most promising techniques in term of stability and efficiency. In this study, we show successful fabrication of precursor solution processed CIGS thin film solar cells which can generate high voltage. In addition, CIGS thin film solar cell modules producing over 2V of open circuit voltage were fabricated by connecting three single cells in series, which are applicable to water electrolysis. The operating current and voltage during water electrolysis was measured to be 4.23mA and 1.59V, respectively, and solar to hydrogen efficiency was estimated to be 3.9%.

An Evaluation of Net-zero Contribution by Introducing Clean Hydrogen Production Using Life Cycle Assessment (청정수소 생산 방식 도입에 따른 LCA 기반 탄소중립 기여도 평가)

  • SO JEONG JANG;DAE WOONG JUNG;JEONG YEOL KIM;YONG WOO HWANG;HEE KYUNG AN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.175-184
    • /
    • 2024
  • This study focuses on investigating the importance of managing greenhouse gas emissions from global energy consumption, specifically examining domestic targets for clean hydrogen production. Using life cycle assessment, we evaluated reductions in global warming potential and assessed the carbon neutrality contribution of the domestic hydrogen sector. Transitioning from brown or grey hydrogen to blue or green hydrogen can significantly reduce emissions, potentially lowering CO2 equivalent levels by 2030 and 2050. These research findings underscore the effectiveness of clean hydrogen as an energy management strategy and offer valuable insights for technology development.

KEPCO-China Huaneng Post-combustion CO2 Capture Pilot Test and Cost Evaluation

  • Lee, Ji Hyun;Kwak, NoSang;Niu, Hongwei;Wang, Jinyi;Wang, Shiqing;Shang, Hang;Gao, Shiwang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.150-162
    • /
    • 2020
  • The proprietary post-combustion CO2 solvent (KoSol) developed by the Korea Electric Power Research Institute (KEPRI) was applied at the Shanghai Shidongkou CO2 Capture Pilot Plant (China Huaneng CERI, capacity: 120,000 ton CO2/yr) of the China Huaneng Group (CHNG) for performance evaluation. The key results of the pilot test and data on the South Korean/Chinese electric power market were used to calculate the predicted cost of CO2 avoided upon deployment of CO2 capture technology in commercial-scale coal-fired power plants. Sensitivity analysis was performed for the key factors. It is estimated that, in the case of South Korea, the calculated cost of CO2 avoided for an 960 MW ultra-supercritical (USC) coal-fired power plant is approximately 35~44 USD/tCO2 (excluding CO2 transportation and storage costs). Conversely, applying the same technology to a 1,000 MW USC coal-fired power plant in Shanghai, China, results in a slightly lower cost (32~42 USD/tCO2). This study confirms the importance of international cooperation that takes into consideration the geographical locations and the performance of CO2 capture technology for the involved countries in the process of advancing the economic efficiency of large-scale CCS technology aimed to reduce greenhouse gases

An Experimental Study on Energy Consumption of Air Washer Outdoor Air Conditioning Systems for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 에어와셔 외기공조시스템의 에너지소비량에 관한 실험적 연구)

  • Kim, Ki-Cheol;Kim, Hyung-Tae;Song, Gen-Soo;Yoo, Kyung-Hoon;Son, Seung-Woo;Shin, Dae-Kun;Park, Dug-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.297-305
    • /
    • 2012
  • In recent large-scale semiconductor manufacturing clean rooms, the energy consumption of outdoor air conditioning systems to heat, humidify, cool and dehumidify incoming outdoor air represents about 45% of the total air conditioning load required to maintain a clean room environment. Therefore, the energy performance evaluation and analysis of outdoor air conditioning systems is useful for reducing the outdoor air conditioning load for a clean room. In the present study, an experiment was conducted to compare the energy consumption of outdoor air conditioning systems with a simple air washer, an exhaust air heat recovery type air washer and a DCC return water heat recovery type air washer. It was shown from the present lab-scale experiment with an outdoor air flow of 1,000 $m^3/h$ that the exhaust air heat recovery type and DCC return water heat recovery type air washer outdoor air conditioning systems were more energy-efficient for the summer and winter operations than the simple air washer outdoor air conditioning system and furthermore, the DCC return water heat recovery type one was the most energy-efficient in the winter operation.

A Study on the Development of Oxygen Cluster Ion Generator for Sterilization of Bio Clean Room(BCR) (Bio Clean Room(BCR)의 멸균을 위한 산소 클러스터이온 발생 장치 개발에 관한 연구)

  • Park, Dong-Il;Chung, Kwang-Seop;Kim, Young-Il;Kim, Sung-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Bio Clean Room(BCR) and pharmaceutical product manufacturing facilities require careful assessment of many factors, including HVAC, controls, room finishes, process equipment, room operations, and utilities. Flow of equipment, personnel, and product must also be considered along with system flexibility, redundancy, and maintenance shutdown strategies. It is important to involve designers, operators, commissioning staff, quality control, maintenance, constructors, validation personnel, and the production representative during the conceptual stage of design. Critical variables for room environment and types of controls vary greatly with the clean space's intended purpose. It is particularly important to determine critical parameters with quality assurance to set limits and safety factors for temperature, humidity, room pressure, and other control requirements. In this paper, oxygen cluster ion equipment was utilized in order to enhance the indoor air quality and to prevent the airborne infection of ward in hospital. Moreover, the performance test of the equipment was also performed in order to develop the optimal sterilization system of BCR using the equipment.

Product Design and Environment (제품설계와 환경)

  • Hong, Soon-Sung
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • In the Korean manufacturing industries, it becomes a common practice to carry both design activities and production planning activities concurrently. We should help product design engineers to apply environmental techniques in the design phase. General design engineers are busy enough to provide new technical features and to reduce the product cost. Professionals in the clean technology field should assist the product design engineers by providing the data basis of environmental specifications and appropriate solutions for each product group. This data basis should be easily accessible through internet or other forms appropriate for the personnel computers.

  • PDF