• Title/Summary/Keyword: Clean Panel

Search Result 51, Processing Time 0.024 seconds

A Study to Determine the Quantity of Clean Agent in an Automatic Fire Extinguisher for Switchgear (수배전반용 개별식 자동소화장치를 위한 청정소화약제량 최적산정에 관한 연구)

  • Choi, Young-Kwan;Yoon, Byeong-Don;Shin, Myong-Chul
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.393-396
    • /
    • 2011
  • 설치의 법적규제가 없는 수배전반용 개별식 자동소화장치의 경우, 소화약제량 산정시 설계자마다 체적당 소요가스량, 개구부 면적, 개구면적당 가산량을 다르게 적용하여 같은 크기의 panel 인데도 소화약제량이 다르게 산정되는 경우가 있다. 따라서, 본 논문에서는 수배전반 및 전동기 기동반용 개별식 자동소화장치를 위한 청정소화약제량(HFC-227ea)을 산정하기 위해 NFPA, NFSC를 비교분석하여 최적의 소화약 제량 산정식을 도출하였다.

  • PDF

The Trend of Materials Technology in New Generation Vehicles (차세대 자동차 개발과 재료기술)

  • 임종대
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.04b
    • /
    • pp.7-7
    • /
    • 2002
  • Recently social demand to achieve low fuel consumption and clean emission requires the development of new generation vehicle beyond the conventional vehicle concept. In this point, new generation vehicle is newly designed as electric vehicle, hybrid electric vehicle, fuel cell electric vehicle or 3 liter car etc. In order to develop new generation vehicle, it is very important to develop new materials and process technologies now. In this paper these new technologies are presented focusing on weight reduction specially. Steel body can be achieved 20-25% weight reduction by adoption of high strength steel and new process technologies, i.e tailored blank and hydroforming. Aluminium body can be achieved 40-50% weigt down by use of all aluminium monocoque body or aluminium space frame with aluminium panel. Plasitic composite body can be achieved 30% weight reduction comparing with conventional steel body.

  • PDF

Defect Inspection of TFT-LCD Panel using 3D Modeling and Periodic Comparison (3차원 모델링과 반복비교를 통한 TFT-LCD 패널의 결점 검출)

  • Lee, Kyong-Min;Chang, Moon-Soo;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.149-150
    • /
    • 2007
  • In this paper, we propose a novel defects inspection algorithm for TFT-LCD panels. We first compensate the distorted image caused by the camera distortion and the uneven illumination environment using the least squares method and the bezier surface. We find a starting point of each pattern. The reference frame, made by subtract method using several clean patterns, is compared to each pattern to find defects. The simulation example shows that our algorithm not only inspects the defects well, but also is robust to the 1-pixel error.

  • PDF

HOW TO DEFINE CLEAN VEHICLES\ulcorner ENVIRONMENTAL IMPACT RATING OF VEHICLES

  • Mierlo, J.-Van;Vereecken, L.;Maggetto, G.;Favrel, V.;Meyer, S.;Hecq, W.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2003
  • How to compare the environmental damage caused by vehicles with different foe]s and drive trains\ulcorner This paper describes a methodology to assess the environmental impact of vehicles, using different approaches, and evaluating their benefits and limitations. Rating systems are analysed as tools to compare the environmental impact of vehicles, allowing decision makers to dedicate their financial and non-financial policies and support measures in function of the ecological damage. The paper is based on the "Clean Vehicles" research project, commissioned by the Brussels Capital Region via the BIM-IBGE (Brussels Institute for the Conservation of the Environment) (Van Mierlo et at., 2001). The VriJe Universiteit Brussel (ETEC) and the universite Libre do Bruxelles (CEESE) have jointly carried out the workprogramme. The most important results of this project are illustrated in this paper. First an overview of environmental, economical and technical characteristics of the different alternative fuels and drive trains is given. Afterward the basic principles to identify the environmental impact of cars are described. An outline of the considered emissions and their environmental impact leads to the definition of the calculation method, named Ecoscore. A rather simple and pragmatic approach would be stating that all alternative fuelled vehicles (LPG, CNG, EV, HEV, etc.) can be considered as ′clean′. Another basic approach is considering as ′clean′ all vehicles satisfying a stringent omission regulation like EURO IV or EEV. Such approaches however don′t tell anything about the real environmental damage of the vehicles. In the paper we describe "how should the environmental impact of vehicles be defined\ulcorner", including parameters affecting the emissions of vehicles and their influence on human beings and on the environment and "how could it be defined \ulcorner", taking into account the availability of accurate and reliable data. We take into account different damages (acid rain, photochemical air pollution, global warming. noise, etc.) and their impacts on several receptors like human beings (e.g., cancer, respiratory diseases, etc), ecosystems, or buildings. The presented methodology is based on a kind of Life Cycle Assessment (LCA) in which the contribution of all emissions to a certain damage are considered (e.g. using Exposure-Response damage function). The emissions will include oil extraction, transportation refinery, electricity production, distribution, (Well-to-Wheel approach), as well as the emission due to the production, use and dismantling of the vehicle (Cradle-to-Grave approach). The different damages will be normalized to be able to make a comparison. Hence a reference value (determined by the reference vehicle chosen) will be defined as a target value (the normalized value will thus measure a kind of Distance to Target). The contribution of the different normalized damages to a single value "Ecoscore" will be based on a panel weighting method. Some examples of the calculation of the Ecoscore for different alternative fuels and drive trains will be calculated as an illustration of the methodology.

Effect of Latent Heat Material Placement on Inside Temperature Uniformity of Insulated Transfer Boxes (단열용기의 잠열재 배치에 따른 내부 온도 균일성에 대한 영향)

  • HyungYong Ji;Dong-Yeol Chung;Seuk Cheun Choi;Joeng-Yeol Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • An optimized design of the transportation insulated box must be considered to control the thermal damage in order to maintain the fresh condition for temperature-sensitive medicine and frozen food safety. The inside temperature of the insulated box is a natural convection enclosure state, thermal stratification naturally occurs as time passes in case of with outside heat load. The latent heat material (LHM) placement inside the box maintains the target temperature of the product for temperature fluctuations during transport, and LHM application is a common and efficient method. In this work, inside temperature stratification in an insulated box depending on the LHM pack position is numerically simulated and experimented. The insulated box is made up of vacuum insulation panel (VIP), and LHM modules are placed over six faces inside the box, with the same weight. The temperature curves for 72 hrs as experiment results clearly show the temperature stratification in the upper, middle, and lower at the LHM melting time region. However, the temperature stratification state is uniformly changed in accordance with the condition of the upper and lower placement weight of the LHM pack. And also, the temperature uniformity by changed placement weight of LHM has an effect on maintaining time for target air temperature inside the box. These results provide information on the optimized design of the insulated box with LHM.

A Study on Micro-Electrode Pattern of Repair Process Using Electrohydrodynamic Printing System (전기수력학 프린팅 기술을 이용한 미세전극 패턴의 리페어 공정 적용에 관한 연구)

  • Yang, Young-Jin;Kim, Soo-Wan;Kim, Hyun-Bum;Yang, Hyung-Chan;Lim, Jong-Hwan;Choi, Kyung-Hyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.232-240
    • /
    • 2016
  • Recently, various research studies have been conducted and many are in progress for the suitable alternative materials for ITO based touch screen panel (TSP) due to limitations in size and flexibility. Various researches from all over the world have been attempted to fabricate the fine electrode less than $5{\mu}m$ for the rapid developing of display technology. Research is also being carried out in metal mesh methods using the existing technologies and alternative materials at commercial level. However, by using the existing technologies certain discrepancies are observed like low transparency and low yield which also results in the distortion of patterns. For repairing the damaged pattern, the conventional laser CVD technique has also been used but there are some challenges observed in CVD technique like achieving a stable fine electrode of $10{\mu}m$ or less and avoiding the formation of satellite drops. To overcome these issues, a new printing process named Electrohydrodynamic (EHD) printing, has been introduced by which $5{\mu}m$ fine patterns can be printed in one step. This EHDA printing technique has been applied to print very fine electrodes of $5{\mu}m$ or less by using conductive inks of various viscosities. This study also presents the optimized process parameters for printing $5{\mu}m$ fine electrode patterns during experiments by controlling the applied voltage and supply flow rate. The $5{\mu}m$ repair electrodes were fabricated for repairing $50{\mu}m$ shorted electrode samples.

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

Evaluation of a Wafer Transportation Speed for Propulsion Nozzle Array on Air Levitation System (공기 부상방식 이송시스템의 추진 노즐 배치방법에 따른 웨이퍼 이송 속도 평가)

  • Hwang Young-Kyu;Moon In-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.306-313
    • /
    • 2006
  • Automated material handling system is being used as a method to reduce manufacturing cost in the semiconductor and flat panel displays (FPDs) manufacturing process. Those are considering switch-over from the traditional cassette system to single-substrate transfer system to reduce raw materials of stocks in the processing line. In the present study, the wafer transportation speed has been evaluated by numerical and experimental method for three propulsion nozzle array (face, front, rear) in an air levitation system. Test facility for 300 mm wafer was equipped with two control tracks and a transfer track of 1,500mm length. The diameter of propulsion nozzle is 0.8mm and air velocity of wafer propulsion is $50\sim150m/s$. We found that the experimental results of the wafer transportation speed were well agreed with the numerical ones. Namely, the predicted values of the maximum wafer transportation speed are higher than those values of experimental data by 16% and the numerical result of the mean wafer transportation speed is higher than the experimental result within 20%.

A study on the UI design and program development for integrated management of carbon data in city (도시 탄소데이터 통합관리를 위한 프로그램 설계 방안 및 UI 연구)

  • Park, Jun-Hyoung;Kim, Seong-Sik;Kim, Jong-Woo;Choi, Guei-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.108-117
    • /
    • 2013
  • Studies on the regulation and measurement of greenhouse gases(GHGs) emissions have been carrying out for global wanning. In order to reduce greenhouse gas emissions, many countries have been promoting the Emissions Trading System and projects of the Joint Implementation(JI) and Clean Development Mechanism(CDM). These country's GHG emissions have been measured calculation criteria based on the Intergovernmental Panel on Climate Change(IPCC) Guidelines. In order to respond to GHGs regulation, in each country, it is planing to build a Low-Carbon City. The system has been developed for calculating GHGs emissions from companies and institutions in their respective countries. However, the system can monitor the GHGs per city, has not been developed. In this paper, it is studied to design the User Interface and to develop integrated monitoring program for Low-carbon city. This program will make possible monitoring and management, statistics, and reports written by using each data in units of cities.

Design of Vision Based Punching Machine having Serial Communication

  • Lee, Young-Choon;Lee, Seong-Cheol;Kim, Seong-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2430-2434
    • /
    • 2005
  • Automatic FPC punching instrument for the improvement of working condition and cost saving is introduced in this paper. FPC(flexible printed circuit) is used to detect the contact position of K/B and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, the accuracy of the punching degree is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used for the sake of cost down instead of using high quality vision systems for the FA. 3D Mechanical design tool(Pro/E) is used to manage the exact tolerance circumstances and avoid design failures. Simulation is performed to make the complete vision based punching machine before assembly, and this procedure led to the manufacturing cost saving. As the image processing algorithms, dilation, erosion, and threshold calculation is applied to obtain an exact center position from the FPC print marks. These image processing algorithms made the original images having various noises have clean binary pixels which is easy to calculate the center position of print marks. Moment and Least square method are used to calculate the center position of objects. In this development circumstance, Moment method was superior to the Least square one at the calculation of speed and against noise. Main control panel is programmed by Visual C++ and graphical Active X for the whole management of vision based automatic punching machine. Operating modes like manual, calibration, and automatic mode are added to the main control panel for the compensation of bad FPC print conditions and mechanical tolerance occurring in the case of punch and die reassembly. Test algorithms and programs showed good results to the designed automatic punching system and led to the increase of productivity and huge cost down to law material like FPC by avoiding bad quality.

  • PDF