• 제목/요약/키워드: Clean

검색결과 5,334건 처리시간 0.028초

질산 제거 및 재이용 기술 (Nitrate Removal and Recycling Technique)

  • 이경희;심상준;최광진;김영대;우경자;조영상;최의소
    • 청정기술
    • /
    • 제3권2호
    • /
    • pp.87-93
    • /
    • 1997
  • 본 실험은 알루미나 시멘트와 산화칼슘을 이용해 염기성 조건에서 질산염을 침전시킴으로써 오염수를 처리하는 공정에 관한 것이다. 시중에 시판되고 있는 알루미나 시멘트 중 알루미나 함량이 낮은 시멘트가 높은 질산염 제거를 보였다. 알루미늄과 칼슘의 성분비는 침전반응에 가장 중요한 요소임을 알 수 있었다. 고농도의 질산염 폐수의 처리를 위해 다단계의 침전반응이 효과적이었다. 질산염 뿐만 아니라 황산, 인산 및 염소의 제거에도 침전반응에 의한 제거가 가능하였다. 반응 후에 탄산나트륨의 첨가와 산을 이용한 중화를 포함한 후처리로 처리수내에 용출된 알루미늄과 칼슘의 제거가 가능하였다.

  • PDF

Torrefaction Effect on the Grindability Properties of Several Torrefied Biomasses

  • Setyawan, Daru;Yoo, Jiho;Kim, Sangdo;Choi, Hokyung;Rhim, Youngjoon;Lim, Jeonghwan;Lee, Sihyun;Chun, Dong Hyuk
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.547-554
    • /
    • 2018
  • Torrefaction is the promising process of pretreating biomass materials to increase the quality of their energy, especially to upgrade the materials' grindability so that it is suitable for a commercial pulverizer machine. In this study, torrefaction of oak, bamboo, oil palm trunk, and rice husk was carried out under different torrefaction temperatures ($300^{\circ}C$, $330^{\circ}C$, and $350^{\circ}C$) and different torrefaction residence times (30, 45, and 60 minutes). Complete characterization of the torrefied biomass, including proximate analysis, calorific value, thermogravimetric analysis, mass yield, energy yield, and grindability properties (Hardgrove Grindability Index) was carried out. Increasing the torrefaction temperature and residence time significantly improved the calorific value, energy density (by reducing the product mass), and grindability of the product. Furthermore, for commercial purposes, the torrefaction conditions that produced the desired grindability properties of the torrefied product were $330^{\circ}C-30minutes$ and $300^{\circ}-45minutes$, and the latter condition produced a higher energy yield for bamboo, oil palm trunk, and rice husk; however, torrefaction of oak did not achieve the targeted grindability property values.

신경외과 병동에 적용한 Vancomycin 내성 장구균의 감염관리 전략효과 및 균집락의 위험인자 분석 (Effects of Infection Control Strategies & Analysis of Risk Factors for Vancomycin Resistant Enterococci)

  • 홍혜경;이꽃실;박성춘;정은경;박미라;김세철
    • 한국의료질향상학회지
    • /
    • 제19권1호
    • /
    • pp.30-42
    • /
    • 2013
  • Objectives: This study was intended to check if the "Creating Clean Wards" project, which is an innovative reinforced campaign activity targeting infection control strategies and active surveillance cultures for VRE (vancomycin resistant enterococci) high-risk patients to be admitted in the NS (neuro-surgery) wards, would be reduced the incidence rates of VRE acquisition, transmission rates. Methods: 75 subjects of the VRE high-risk patients were surveyed by carrying out active surveillance cultures of VRE colonization 11 times from January to March, 2012. And the retrospective study was conducted dividing them into two groups. Results: The incidence rates of VRE acquisition was reduced to 3.67 cases per 1,000 patients day in the control group and to 2.88 cases in experimental group, which was not statistically significant (p = .753). VRE transmission rates of 0.0015 per day before the project tended to increase to 0.0019, although not statistically significant (p = .650). As a result of multivariate analysis with regard to using glycopeptide antibiotics in order to find out risk factors of VRE colonization, the patients who had been treated with glycopeptide until VRE colonization showed 274.41 times higher rate. Conclusion : For effective VRE infection control in NS wards, We should carry out active surveillance culture regularly, especially patient of using glycopeptide. And block the spread of VRE by strengthening infection control through the strict isolation and the changed mind-set of members motivated by the "Creating Clean Wards" campaign.

  • PDF

식품제조공장 내 공중부유미생물 오염도와 오염진균동정 (Identification and Concentration of Airborne Microbes in Food Manufacturing Plants)

  • 곽현정;이헌준;이상호;나혜진
    • 한국식품위생안전성학회지
    • /
    • 제26권4호
    • /
    • pp.361-365
    • /
    • 2011
  • To evaluate the indoor air quality of food manufacturing plants, the presence of viable bacteria and fungi was assessed in the indoor air of the facilities at which 9 food items were manufactured. Air samples were collected from the general zone, low clean zone and clean zone of each factory with an air sampler, in combination with plate counts agar using for bacteria, and dichloran-glycerol agar for fungi. The samples were incubated at $25^{\circ}C$ for 4 to 7 days. After culture, the colony forming units (CFU) on each plate were counted and corrected with a positive hole conversion table. The average concentration of bacteria was $2.2{\times}10^3\;CFU/m^3$ in the general zone, $1.2{\times}10^3\;CFU/m^3$ in the low clean zone and $7.3{\times}10^2\;CFU/m^3$ in the clean zone. The average concentration of fungal microbes was $2.5{\times}10^3\;CFU/m^3$ in the general zone, $2.6{\times}10^3\;CFU/m^3$ in the low clean zone, and $2.0{\times}10^2\;CFU/m^3$ in the clean zone. No meaningful differences were detected between the general zone and the low clean zone, but the clean zone had significantly lower concentrations than the other zones. Additionally, the identification of the fungi was performed according to morphological method using a giant culture and slide culture. The fungi were identified as belonging to 18 genera, and the genera Cladosporium(33%), Penicillium(29%) and Aspergillus(26%), predominated. Aspergillus isolates were identified to species level, and A. ochraceus, a mycotoxigenic species, was identified. As part of the effort to control the quality of the indoor air of food manufacturing plants, our results show that continued studies are clearly warranted.

Effect of slag and bentonite on shear strength parameters of sandy soil

  • Sabbar, Ayad Salih;Chegenizadeh, Amin;Nikraz, Hamid
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.659-668
    • /
    • 2018
  • A series of direct shear tests were implemented on three different types of specimens (i.e., clean Perth sand, sand containing 10, 20 and 30% bentonite, sand containing 1, 3 and 5% slag, and sand containing 10, 20 and 30% bentonite with increasing percentages of added slag (1%, 3% and 5%). This paper focuses on the shear stress characteristics of clean sand and sand mixtures. The samples were tested under different three normal stresses (100, 150 and 200 kPa) and three curing periods of no curing time, 7 and 14 days. It was observed that the shear stresses of clean sand and mixtures were increased with increasing normal stresses. In addition, the use of slag has improved the shear strength of the sand-slag mixtures; the shear stresses rose from 128.642 kPa in the clean sand at normal stress of 200 kPa to 146.89 kPa, 154 kPa and 161.14 kPa when sand was mixed with 1%, 3% and 5% slag respectively and tested at the same normal stress. Internal friction angle increased from $32.74^{\circ}$ in the clean sand to $34.87^{\circ}$, $37.12^{\circ}$ and $39.4^{\circ}$ when sand was mixed with 1%, 3% and 5% slag respectively and tested at 100, 150, and 200 kPa normal stresses. The cohesion of sand-bentonite mixtures increased from 3.34 kPa in 10% bentonite to 22.9 kPa, 70.6 kPa when sand was mixed with 20% and 30% bentonite respectively. All the mixtures of clean sand, different bentonite and slag contents showed different behaviour; some mixtures exhibited shear stress more than clean sand whereas others showed less than clean sand. The internal friction angle increased, and cohesion decreased with increasing curing time.