• 제목/요약/키워드: Clay water content

검색결과 402건 처리시간 0.031초

시베리아 동토지역 점성토의 압축강도 시험 (Compressive Strength Tests on Frozen Siberian Clay)

  • 김영진;마틴 크리스트
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.97-104
    • /
    • 2008
  • The objective of this study was to investigate the strength characteristics of frozen clay. Compressive strength tests were performed on frozen clay with different water contents at various temperatures. The dry density of specimens and strain rate was kept constant. Test results showed that compressive strength increased with increasing water content and decreasing temperature. The increase in peak strength became more significant the lower the temperature for a given water content. The failure mode changed from brittle to ductile deformation with increasing water content and decreasing temperature. Tests also showed an increase in deformation modulus with increasing peak strength, increasing water content and decreasing temperature.

  • PDF

Laboratory investigation for engineering properties of sodium alginate treated clay

  • Cheng, Zhanbo;Geng, Xueyu
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.465-477
    • /
    • 2022
  • The formation of biopolymer-soil matrices mainly depends on biopolymer type and concentration, soil type, pore fluid and phase transfer to influence its strengthening efficiency. In this study, the physical and mechanical properties of sodium alginate (SA) treated kaolinite are investigated through compaction test, thread rolling teat, fall cone test and unconfined compression test with considering biopolymer concentration, curing time, initial water content, mixing method. The results show that the liquid limit slightly decreases from 69.9% to 68.3% at 0.2% SA and then gradually increases to 98.3% at 5% SA. At hydrated condition, the unconfined compressive strength (UCS) of SA treated clay at 0.5%, 1%, 2% and 3% concentrations is 2.57, 4.5, 7.1 and 5.48 times of untreated clay (15.7 kPa) at the same initial water content. In addition, the optimum biopolymer concentration, curing time, mixing method and initial water content can be regarded as 2%, 28 days, room temperature water-dry mixing (RD), 50%-55% to achieve the maximum unconfined compressive strength, which corresponds to the UCS increment of 593%, compared to the maximum UCS of untreated clay (780 kPa).

Rowe Cell을 이용한 슬러리점토의 압밀특성 (Consolidation characteristics of slurry by Rowe Cell)

  • 정규향;조진구;주재우;백원진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.875-883
    • /
    • 2003
  • Slurry clay has much higher water content than liquid limit of clay and even if small loads apply, it suffers a great settlement. Accordingly it is very difficult to perform a general consolidation test about slurry clay because of high water content. In this study consolidation tests have been performed successfully using Rowe Cell Tester about 1 remolding clay and 3 slurry clays with a water content of 100%, 133% and 150%. From the test results compression index characteristics, secondary compression index characteristics and consolidation coefficient characteristics have been investigated about slurry clay and remolding clay. Also two kinds of theory, by Terzaghi theory and by Mikasa theory, has been used to calculate consolidation coefficients. Compared to the calculation results, they had a similar value of consolidation coefficient. However if Mikasa theory is applied in the field design, the period which reach to the required consolidation degree will be much reduced compared to the period by Terzaghi theory because the time coefficient T$\_$v/ by Mikasa theory is far smaller than T$\_$v/ by Terzaghi theory.

  • PDF

수분(水分) : 점토비(粘土比)에 따른 주물사(鑄物砂)의 기계적(機械的) 성질(性質)에 관한 연구(硏究) (A Study on the Mechanical Properties of Molding Sand with various Water/Clay Ratio.)

  • 이계완;이추림
    • 한국주조공학회지
    • /
    • 제4권2호
    • /
    • pp.89-95
    • /
    • 1984
  • A Study on the Mechanical Properties of Molding Sand with Various Water/Clay Ratio A standard sample of molding sand was prepared by adding a various amount of bentonite, which has water/clay ratio from 0.4 to 0.6, into artificial sand, Hanyoung #6. The results obtained by measuring the room temperature properties of green mold are as follows. 1. This compressive strength of green molds which have 4% and 10% of bentonite decreased with increasing water/clay ratio, but the maximum strengths of 4.3 (psi) and 7.2 (psi) were observed in the samples with 6%, 8% bentonite respectively when the water/clay is 0.45. 2. The optimum water/clay ratio for strength and permeability increased from 0.4 to 0.5 with increasing clay. 3. The green compressive strength was proportional to the hardness. 4. Deformation increased with increasing water/clay ratio. 5. Flowability decreased with increasing water/clay ratio and clay content in molding sand.

  • PDF

점토-시멘트 혼합 지반의 물리적 특성 예측 (Prediction of Physical Characteristics of Cement-Admixed Clay Ground)

  • 박민철;전제성;정상국;이송
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.529-536
    • /
    • 2014
  • 점토-시멘트 혼합토의 물리적 특성인 함수비, 비중, 단위중량과 간극비 등은 혼합토의 강도, 압축성, 압밀거동 예측 등에 적용되는 주요한 인자이다. 기존에는 혼합토의 물리적 특성을 복잡한 실내시험 및 시공 후 확인조사를 통해 이루어 졌다. 본 연구는 점토 함수비 90~170%, 시멘트 함유율 5~25%와 재령기간은 3~90일 조건으로 실내시험을 수행하였으며, 양생 후 혼합토 함수비, 비중, 단위중량과 간극비 등에 대한 변화를 분석하였다. 시험결과를 이용하여 원지반 점토 함수비, 시멘트 함유율과 재령기간 등의 역학적 관계를 바탕으로 혼합토의 함수비, 비중과 단위중량에 관한 물성 예측식을 제안하였다. 혼합토의 물성 예측식을 지반공학 분야에서 일반적으로 사용하는 간극비 산출식에 대입하여 혼합토의 간극비 예측식을 도출하였으며, 방콕 점토를 대상으로 간극비에 대한 실험결과와 본 연구에서 제안한 예측식을 검증하였다.

고함수비를 가진 준설토의 압밀특성 (Consolidation Characteristics of Dredged Soil with High Water Content)

  • 주재우;정규향;김영규
    • 한국농공학회지
    • /
    • 제45권5호
    • /
    • pp.133-139
    • /
    • 2003
  • Dredged soil from sea has much higher water content than liquid limit of clay and even if small loads apply, it will suffer a great settlement. Therefore it is very difficult to perform a consolidation test with general consolidation apparatus because of high water content. In this study Rowe Cell Apparatus consolidation tests have been performed with 1 remolding clay of water content 56% and 4 slurry clays of a water content of 100%, 120%, 133% and 150%. From the test results the consolidation characteristics such as compression index, secondary compression index and consolidation coefficient have been investigated with a variation of water content of dredged soil. The equations to get consolidation constants such as a compression index, a consolidation coefficient have been proposed with the field water content.

방사성폐기물 처분장 되메움재를 위한 국산점토/분쇄암석 혼합물의 수리특성에 관한 연구 (A Study on the Hydraulic Properties of Domestic Clay/Crushed Rock Mixture for the Backfill Material in a Radioactive Waste Repository)

  • 이재완;조원진;한필수;박헌휘
    • Nuclear Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.54-62
    • /
    • 1994
  • 중저준위 방사성폐기물 처분장 되메움재 후보물질로 제안되고 있는 국산 천연점토와 분쇄암석의 혼합물의 수리특성을 조사하였다. 혼합물의 수분함량 변화에 따른 혼합물의 밀도 변화를 조사하여, 동일 압축력 하에서 최대밀도를 얻을 수 있는 최적수분함량을 찾고자 하였으며, 혼합물 중의 점토함량에 따른 수리전도도 변화를 조사하였다. 혼합물 중 점토함량이 감소할수록 얻어 지는 최대밀도가 증가하였으며, 최적수분함량도 보다 명확해졌으나, 혼합물의 밀도는 수분함량에 그다지 민감하지 않았다. 혼합물의 수리전도도는 점토 함량이 감소할수록 증가하여 건조밀도 1.2 Mg/㎥ 일 때 100% 점토인 경우의 3 $\times$ $10^{-12}$ m/s에서 25% 점토함량의 경우에는 7 $\times$ $10^{-10}$ m/s로 증가하였으나, 건조밀도가 1.5 Mg/㎥ 일 때에는 25% 점토함량의 경우에도 5 $\times$ $10^{-12}$ m/s 의 낮은 값을 유지하였다. 혼합물의 수리전도도 추장을 위한 유효점토건조밀도 개념이 제안되었으며. 이 개념은 다양한 건조밀도와 분쇄암석 함량을 가진 혼할물의 수리전도도를 잘 설명할 수 있었다.

  • PDF

Study on mechanical properties of phosphate tailings modified clay as subgrade filler

  • Xiaoqing Zhao;Tianfeng Yang;Zhongling Zong;Teng Liang;Zeyu Shen;Jiawei Li;Gui Zhao
    • Geomechanics and Engineering
    • /
    • 제36권6호
    • /
    • pp.619-629
    • /
    • 2024
  • To improve the utilization rate of phosphate tailings (PTs) and widen the sources of subgrade filler, the PTs is employed to modify clay, forming a PTs modified clay, applied in the subgrade. Accordingly, the environmental friendliness of PTs was investigated. Subsequently, an optimal proportion was determined through compaction and California Bearing Ratio (CBR) experiments. Afterward, the stability of mixture with the optimal proportion was further evaluated through the water stability and dry-wet stability experiments. Finally, via the gradation and microstructure experiments, the strength mechanism of PTs modified clay was analyzed. The results show that the PTs were classified in the non-hazardous solid wastes, belonging to Class A building materials. With the increase of PTs content and the decrease of clay content, the optimum water content and the swelling degree gradually decrease, while the maximum dry density and CBR first increase and then decrease, reaching their peak value at 50% PTs content, which is the optimal proportion. The resilient modulus of PTs modified clay at the optimal proportion reaches 110.2 MPa. The water stability coefficient becomes stable after soaking for 4 days, while the dry-wet stability coefficient decreases with the increase of cycles and tends to be stable after 8 cycles. Under the long-term action, the dry-wet change has a greater adverse impact than continuous soaking. The analysis demonstrates that the better strength mainly comes from the skeleton role of PTs and the cementation of clay. The systematic laboratory test results and economic analysis collectively provide data evidence for the advantages of PTs modified clay as a subgrade filler.

석회 혼입 점토의 강도 특성 (Strength properties of lime-clay mixtures)

  • 여재호;권무남;구정민;김현기
    • Current Research on Agriculture and Life Sciences
    • /
    • 제18권
    • /
    • pp.61-69
    • /
    • 2000
  • This study was conducted to investigate most effective the optimum lime content for lime-clay modification. To achieve the aim, characteristics of compaction and compressive strength were tested by adding of 0, 5, 10, 15 and 20% lime (Hydrated lime) of dry weight of the clay. Distilled water was added 10, 15, 20 and 25% of dry weight of lime-clay mixture. In this test, the compressive strength of the specimens was measured according to the following curing period : 7, 21, 28, 35 and 49 days. The results are as follows. (1) As lime additive increased, the optimum moisture content of lime-clay mixture was increased and the maximum dry density was decreased. (2) The soil mixture of 20% of the moisture content and 10% of lime additive was shown the maximum compressive strength. (3) As curing period longer, the compressive strength was increased but after 21 curing days, the increasing rate of compressive strength was low as compared with earlier its value. (4) In the range of 20% of the moisture content, compressive strength of mixture of 10% lime additive increased twice compared with that of mixture of 0% lime additive. (5) All of the lime-clay are possible to use for an sub-base material and 20% of moisture content of lime-clay mixture is possible to use for a base material.

  • PDF

점토와 석회의 혼합에 의한 반응생성물과 물성변화 (Reaction Products and Properties of Clay Mixed with Lime)

  • 김병규;황진연
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.505-512
    • /
    • 1999
  • Soft marine clay deposits pose several foundation problems. Generally, lime stabilization is used worldwide for solidifying of soft marine clay deposits. In this paper, a series of laboratory tests were conducted to verify clay-lime reaction. A clay was collected from Pusan, which was mixed with various quantities of quick lime and slaked lime. Various compounds produced by clay-lime reaction were identified by X-ray diffraction analysis. The physico-chemical properties of the clay were also investigated. Compounds such as calcium silicate hydrate (CSH), calcium aluminate hydrate (CAH), calcium aluminate (CA), hillebrandite, and gehlenite were identified. It is likely that such compounds were mainly produced by pozzolanic reaction. Based on the change of physico-chemical properties obtained by the reaction, the water content was considerably decreased when lime was added to the clay. In addition, unconfined strength was increased. In the other hand, quick lime was more effective than slaked lime in decreasing and increasing of the water content and unconfined strength, respectively. Fewer cracks were produced when the clay was mixed with quick lime. It is suggested that these beneficial changes produced by the mixing of the clay and lime depend on the properties of compounds obtained by chemical reaction.

  • PDF