• Title/Summary/Keyword: Clay materials

Search Result 752, Processing Time 0.023 seconds

Structure-property relationship of melt intercalated maleated polyethylene nanocomposites

  • Reddy, M.M.;Gupta, Rahul K.;Bhattacharya, S.N.;Parthasarathy, R.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Low density polyethylene nanocomposites were prepared by melt intercalating maleic anhydride grafted polyethylene and montmorillonite clay. It has been found that maleic anhydride has promoted strong interactions between polyethylene and montmorillonite, leading to the homogeneous dispersion of clay layers. Rheological experiments revealed that prepared nanocomposites exhibited shear thinning behaviour. Polyethylene nanocomposites exhibited an increase in steady shear viscosities compared to virgin polyethylene owing to strong polymer clay interactions. The tensile strength of nanocomposites was improved but elongation at break decreased considerably. Also, barrier properties improved significantly with montmorillonite content.

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

Organic-Inorganic Hybrid Materials Technology for Gas Barrier (가스 차단을 위한 유.무기 하이브리드 소재기술)

  • Kim, Ki-Seok;Pa가, Soo-Jin
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.112-117
    • /
    • 2011
  • Recently, high growth potential of barrier materials industry including high performance packing materials was expected with increasing the national income and well-being culture. As high barrier materials, polymer nanocomposites have considerable attractions due to their excellent physical properties compared to conventional composite materials. In general, polymer nanocomposites were consisted of polymer matrix and inorganic fillers, such as layered silicate, carbon nanotubes, and metal- or inorganic nanoparticles. Among these materials, layered silicate which was called as the clay was usually used as nano-fillers because of naturally abundant and most economical and structural properties. Clay-reinforced polymer nanocomposites have various advantages, such as high strength, flammability, gas barrier property, abrasion resistance, and low shrinkage and used for automotive and packing materials. Therefore, in this paper, we focused on the need of gas barrier materials and materials-related technologies.

Chemical Bonding Nature and Mesoporous Structure of Nickel Intercalated Montmorillonite Clay

  • Park, Hye-Mi;Kim, Tae-Woo;Hwang, Seong-Ju;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1323-1328
    • /
    • 2006
  • Mesoporous nickel intercalated aluminosilicate nanohybrid has been synthesized through a recombination reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and aqueous nickel acetate solution. According to powder X-ray diffraction and field emission-scanning electron microscopic analyses, the intercalation of nickel species expands significantly the basal spacing of the host montmorillonite clay and the crystallites of the intercalation compound are assembled to form a house-of-card structure. $N_2$ adsorption-desorption isotherm measurements with BJH pore analyses clearly demonstrated that the porosity of the intercalate originates mainly from mesopores (diameter $\sim50\;\AA$) formed by the house-of-card type stacking of clay crystallites. From FT-IR and X-ray absorption spectroscopic analyses, it becomes certain that intercalated nickel ion is stabilized in an isolated $NiO_6$ octahedral unit. The present mesoporous intercalation compound is expected to be applicable as efficient catalysts or absorbents.

Evaluation of Humidity Control Ceramic Paint Using Gypsum Binder

  • Lee, Jong-Kyu;Kim, Tae-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.74-79
    • /
    • 2018
  • Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than those of bentonite and zeolite. It was effective to add white cement as well as a retarding agent to control the setting time of the ceramic paint. As the amount of added porous materials increases, the specific surface area and total pore volume of ceramic paint increase, but the average pore diameter decreases. The addition of porous materials having a high specific area and a large pore volume improves the moisture absorptive and desorptive performance of the ceramic paint. Therefore, in this experiment, the moisture absorptive and desorptive properties were best when active clay was added. Also, as the added amount of porous materials increases, the moisture absorptive and desorptive properties improve. In this experiment, when 70 mass% of active clay was added to ceramic paint, the hygroscopicity was highest at about $80g/m^2$.

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

Characteristics of Calcined Clay by Carburization Treatment (소성 점토의 침탄 처리에 따른 물성 변화에 관한 연구)

  • Kim, Sang-Myung;Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.63-68
    • /
    • 2008
  • Traditionally and generally used calcined clay was carburized, and its characteristics were studied. Carburization treatment was performed by the thermally decomposed carbon and the deposit carbon which occur in a so called 'Boudouard reaction $(2CO{\rightarrow}CO_2+C)'$ at fuel combustion process in a closed-type furnace. The color of the carburized calcine clay changed from yellow to black, and the carbon component revealed as crystalline graphite by the X-ray diffraction test. The weight of the carburized calcine clay decreased to about 4 wt.% by the 1st heating to $1400^{\circ}C$ in air but it does not decreased by the 2nd heating of the same conditions. By the carburization treatment, the water absorption changed from 13 wt.% to 6 wt.%, and the contact angle for water drop changed, too, from 0 to $87^{\circ}$ which was tested by the photograph of one minute after a water drop contact. It means the carburized calcine clay does not absorb water drop so it has a hydrophobic characteristic.

Impacts of Saudi Arabian fly ash on the structural, physical, and radiation shielding properties of clay bricks rich vermiculite mineral

  • Aljawhara H. Almuqrin;Abd Allh M. Abd El-Hamid;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2324-2331
    • /
    • 2024
  • The current study investigated Saudi Arabian oil fly ash impacts on Egyptian clay bricks' structural and radiation shielding properties. To produce the required bricks, crushed clay minerals from the Hafafit area were mixed with 0, 10, 20, 30, and 40 % wt.% Saudi Arabian oil fly ash and pressed at a pressure rate of 68.55 MPa. Identification of the minerals in the chosen clay was achieved via X-ray diffraction. Additionally, the material's morphology and chemical composition were determined through scanning electron microscope and energy-dispersive X-ray. The fabricated bricks' density was reduced by 36.3 % through increasing the concentration of fly ash from 0 to 40 wt%. Then, the fly ash addition's influence on the fabricated clay bricks' γ-ray shielding properties was investigated by Monte Carlo simulation, which found a reduction in the fabricated bricks' linear attenuation coefficient (LAC) by 41.2, 36.0, 33.8, and 33.8 % at the 0.059, 0.103, 0.662, and 1.252 MeV γ-ray energies, respectively. The LAC reduction caused an increase in the fabricated bricks' half-value thickness, transmission factor, and the equivalent thickness of the lead. Moreover, the thicker fabricated sample thicknesses were found to have high γ-ray shielding capacity and can thus be used in radiation shielding applications.

Characterization of colloid/interface properties between clay and EAF dust (점토와 전기로 제강분진의 콜로이드/계면 특성 분석)

  • Lee, Jee-Young;Lee, Ki-Gang;Kim, Yoo-Taek;Kang, Seung-Gu;Kim, Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.76-81
    • /
    • 2006
  • The leaching behavior of heavy metal ions with pH and colloid/interface property was analyzed by ICP and SEM. The heavy metals in EAF dust are 'amphoteric metal' and the heavy metal ions leached a little at pH 10. And the leaching concentrations of heavy metals at pH 12 were higher than the that at pH 8. The leaching concentrations of heavy metal ion were decreased with adding the clay to the EAF dust. Especially, the leaching concentrations of heavy metal ion were effectively decreased at pH 12. The observation of colloid/interface properties shows that the soluble silicon hydroxide from clay at pH 12 was precipitated at the surface of the heavy metal and clay particles. This silicon hydroxide precipitates were named the PSHP. The leaching concentrations of heavy metal ion were effectively decreased by the formation of PSHP when adding the clay to the EAF dust and controlling the pH of the slurry at 12.

Making Techniques and Provenance Interpretation for Molding Clay of Four-Guardian Statues in Songgwangsa Temple, Suncheon, Korea (순천 송광사 사천왕상 소조토의 제작기법과 원산지 해석)

  • Jo, Young-Hoon;Jo, Seung-Nam;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.43-60
    • /
    • 2010
  • This study was investigated quantitative and objective making techniques for molding clay of Four-guardian statues in Songgwangsa temple. Also, basic data about the provenance of molding clay was acquired for the restoration using same materials when the conservation treatment is carried out. As a result, molding clay used the Four-guardian statues was identified the very similar soil regardless of layers and objects. But molding clay differed in particle sizes and contents of organic matters according to the first layer to finish layer in relatively thick parts. Also, it was used one kind of soil without the layer distinction in thin parts. The restoration soil was applied to genetically similar soil as molding clay of the Four-guardian statues, and showed a difference of careful selection degree according to the layers. As a result of the provenance interpretation, the soil distributing presumed provenance was confirmed the same origin as molding clay. Therefore, the soil is appropriate for the materials of conservation treatment. This result will contribute inorganic material research and conservation treatment for the clay molded Four-guardian statues in Korea.