• 제목/요약/키워드: Classify Algorithm

검색결과 904건 처리시간 0.026초

역전파 알고리즘을 이용한 웨이퍼의 다이싱 상태 모니터링 (Monitoring of Wafer Dicing State by Using Back Propagation Algorithm)

  • 고경용;차영엽;최범식
    • 제어로봇시스템학회논문지
    • /
    • 제6권6호
    • /
    • pp.486-491
    • /
    • 2000
  • The dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But inferior goods are made under the influence of several parameters in dicing such as blade, wafer, cutting water and cutting conditions. This paper describes a monitoring algorithm using neural network in order to find out an instant of vibration signal change when bad dicing appears. The algorithm is composed of two steps: feature extraction and decision. In the feature extraction, five features processed from vibration signal which is acquired by accelerometer attached on blade head are proposed. In the decision, back-propagation neural network is adopted to classify the dicing process into normal and abnormal dicing, and normal and damaged blade. Experiments have been performed for GaAs semiconductor wafer in the case of normal/abnormal dicing and normal/damaged blade. Based upon observation of the experimental results, the proposed scheme shown has a good accuracy of classification performance by which the inferior goods decreased from 35.2% to 6.5%.

  • PDF

Double-Bagging Ensemble Using WAVE

  • Kim, Ahhyoun;Kim, Minji;Kim, Hyunjoong
    • Communications for Statistical Applications and Methods
    • /
    • 제21권5호
    • /
    • pp.411-422
    • /
    • 2014
  • A classification ensemble method aggregates different classifiers obtained from training data to classify new data points. Voting algorithms are typical tools to summarize the outputs of each classifier in an ensemble. WAVE, proposed by Kim et al. (2011), is a new weight-adjusted voting algorithm for ensembles of classifiers with an optimal weight vector. In this study, when constructing an ensemble, we applied the WAVE algorithm on the double-bagging method (Hothorn and Lausen, 2003) to observe if any significant improvement can be achieved on performance. The results showed that double-bagging using WAVE algorithm performs better than other ensemble methods that employ plurality voting. In addition, double-bagging with WAVE algorithm is comparable with the random forest ensemble method when the ensemble size is large.

A New Rijection Algorithm Using Word-Dependent Garbage Models

  • Lee, Gang-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • 제16권2E호
    • /
    • pp.27-31
    • /
    • 1997
  • This paper proposes a new rejection algorithm which distinguishes unregistered spoken words(or non-keywords) from registered vocabulary. Two kinds of garbage models are employed in this design ; the original garbage model and a new word garbage model. The original garbage model collects all non-keyword patterns where the new word garbage model collects patterns classified by recognizing each non-keyword pattern with registered vocabulary. These two types of garbage models work together to make a robust reject decision. The first stage of processing is the classification of an input pattern through the original garbage model. In the event that the first stage of processing is ambiguous, the new word dependent garbage model is used to classify thye input pattern as either a registered or non-registered word. This paper shows the efficiency of the new word dependent garbage model. A Dynamic Multisection method is used to test the performance of the algorithm. Results of this experiment show that the proposed algorithm performs at a higher level than that of the original garbage model.

  • PDF

안전도 신호 분석을 통한 지능형 로봇 제어 기법의 개발 (Development of Intelligent Robot Control Technology By Electroocculogram Analysis)

  • 김창현;이주장;김민성
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.755-762
    • /
    • 2004
  • In this research, EOG(Electrooculogram) signal was analyzed to predict the subject's intention using a fuzzy classifier. The fuzzy classifier is built automatically using the EOG data and evolutionary algorithms. An assistant robot manipulator in redundant configuration has been developed, which operates according to the EOG signal classification results. For automatic fuzzy model construction without any experts' knowledge, an evolutionary algorithm with the new representation scheme, design of adequate fitness function and evolutionary operators, is proposed. The proposed evolutionary algorithm can optimize the number of fuzzy rules, the number of fuzzy membership functions, parameter values for the each membership functions, and parameter values for the consequent parts. It is shown that the fuzzy classifier built by the proposed algorithm can classify the EOG data efficiently. Intelligent motion planner that consists of several neural networks are used for control of robot manipulator based upon EOG classification results.

차신호 특성을 이용한 효율적인 적응적 BTC 영상 압축 알고리듬 (An Adaptive BTC Algorithm Using the Characteristics of th Error Signals for Efficient Image Compression)

  • 이상운;임인칠
    • 전자공학회논문지S
    • /
    • 제34S권4호
    • /
    • pp.25-32
    • /
    • 1997
  • In this paper, we propose an adaptive BTC algorithm using the characteristics of the error signals. The BTC algorithm has a avantage that it is low computational complexity, but a disadvantage that it produces the ragged edges in the reconstructed images for th esloping regions beause of coding the input with 2-level signals. Firstly, proposed methods classify the input into low, medium, and high activity blocks based on the variance of th einput. Using 1-level quantizer for low activity block, 2-level for medium, and 4-level for high, it is adaptive methods that reduce bit rates and the inherent quantization noises in the 2-level quantizer. Also, in case of processing high activity block, we propose a new quantization level allocation algorithm using the characteristics of the error signals between the original signals and the reconstructed signals used by 2-level quantizer, in oder that reduce bit rates superior to the conventional 4-level quantizer. Especially, considering the characteristics of input block, we reduce the bit rates without incurrng the visual noises.

  • PDF

패턴인식기법을 이용한 공구마멸상태의 분류 (The Classification of Tool Wear States Using Pattern Recognition Technique)

  • 이종항;이상조
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1783-1793
    • /
    • 1993
  • Pattern recognition technique using fuzzy c-means algorithm and multilayer perceptron was applied to classify tool wear states in turning. The tool wear states were categorized into the three regions 'Initial', 'Normal', 'Severe' wear. The root mean square(RMS) value of acoustic emission(AE) and current signal was used for the classification of tool wear states. The simulation results showed that a fuzzy c-means algorithm was better than the conventional pattern recognition techniques for classifying ambiguous informations. And normalized RMS signal can provide good results for classifying tool wear. In addition, a fuzzy c-means algorithm(success rate for tool wear classification : 87%) is more efficient than the multilayer perceptron(success rate for tool wear classification : 70%).

백삼 등급 자동판정 알고리즘 개발 (Automatic Grading Algorithm for White Ginseng)

  • 김철수;이종호;박승제;김명호
    • Journal of Biosystems Engineering
    • /
    • 제23권6호
    • /
    • pp.607-614
    • /
    • 1998
  • An automatic grading algorithm was developed to replace the manual trading of white ginseng. The algorithm consists of three consecutive stages, (a) image acquisition and preprocessing, (b) mathematical feature extraction, and (c) grade decision using artificial neural network. Mathematical features such as area ratio, mean and standard deviation of graylevel, skewness of graylevel histogram, and the number of run segment are extracted from five equally divided parts of ginseng. An artificial neural network model was used to classify white ginsengs into three categories. The performance of the algorithm was evaluated using 120 ginseng samples and the rate of successful classification was 74%.

  • PDF

Scanning Acoustic Tomograph 방식을 이용한 지능형 반도체 평가 알고리즘 (The Intelligence Algorithm of Semiconductor Package Evaluation by using Scanning Acoustic Tomograph)

  • 김재열;김창현;송경석;양동조;장종훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.91-96
    • /
    • 2005
  • In this study, researchers developed the estimative algorithm for artificial defects in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-Organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages: Crack, Delamination and Normal. According to the results, we were confirmed that estimative algorithm was provided the recognition rates of $75.7\%$ (for Crack) and $83_4\%$ (for Delamination) and $87.2\%$ (for Normal).

  • PDF

Short-term Electric Load Forecasting Using Data Mining Technique

  • Kim, Cheol-Hong;Koo, Bon-Gil;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.807-813
    • /
    • 2012
  • In this paper, we introduce data mining techniques for short-term load forecasting (STLF). First, we use the K-mean algorithm to classify historical load data by season into four patterns. Second, we use the k-NN algorithm to divide the classified data into four patterns for Mondays, other weekdays, Saturdays, and Sundays. The classified data are used to develop a time series forecasting model. We then forecast the hourly load on weekdays and weekends, excluding special holidays. The historical load data are used as inputs for load forecasting. We compare our results with the KEPCO hourly record for 2008 and conclude that our approach is effective.

등고선 지도영상에서의 등고 성분과 비등고 성분의 자동 분리에 관한 연구 (A Study on the Automatic Classification between Contour Elements and Non-Contour Elements in a Contour Map Image)

  • 김경훈;김준식
    • 융합신호처리학회논문지
    • /
    • 제3권4호
    • /
    • pp.7-16
    • /
    • 2002
  • 본 논문에서는 지도 정보를 자동으로 분석하여 등고선과 숫자, 기호를 추출해 내는 알고리즘에 대해 연구하였다. 이를 위해 우선 지도를 이진 영상으로 변환한 후 세선화 작업을 거친다. 세선화된 영상으로부터 등고 성분들을 분리시킨 후, 비등고 성분에 대한 특징분석 후 숫자와 기호를 자동으로 분리한다. 마지막으로 복원 알고리즘을 이용하여 손실 부분을 복원한다. 여러 종류의 등고선 지도영상을 대상으로 모의실험을 수행하여 제안한 알고리즘의 성능을 검증하였다.

  • PDF