• Title/Summary/Keyword: Classify Algorithm

Search Result 902, Processing Time 0.026 seconds

Smoke Image Recognition Method Based on the optimization of SVM parameters with Improved Fruit Fly Algorithm

  • Liu, Jingwen;Tan, Junshan;Qin, Jiaohua;Xiang, Xuyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3534-3549
    • /
    • 2020
  • The traditional method of smoke image recognition has low accuracy. For this reason, we proposed an algorithm based on the good group of IMFOA which is GMFOA to optimize the parameters of SVM. Firstly, we divide the motion region by combining the three-frame difference algorithm and the ViBe algorithm. Then, we divide it into several parts and extract the histogram of oriented gradient and volume local binary patterns of each part. Finally, we use the GMFOA to optimize the parameters of SVM and multiple kernel learning algorithms to Classify smoke images. The experimental results show that the classification ability of our method is better than other methods, and it can better adapt to the complex environmental conditions.

Obstacle Detection and Classification Algorithm of Mobile Robots using a Single Laser Scanner (단일 레이저 스캐너를 이용한 모바일 로봇의 장애물 탐색 및 분리 알고리즘)

  • Lee, Gi-Roung;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.385-386
    • /
    • 2007
  • This paper proposes obstacle detection and classification algorithm using a single laser scanner. The proposed algorithm searches the object singular points using a differential equation, and finds obstacle singular points shows a boundary of obstacle. And the proposed algorithm can classify object even if several obstacles overlapped. Simulation results show the feasibility of proposed algorithm using a single laser scanner, not using several laser scanners.

  • PDF

Clinical Practice Guideline for Soyangin Disease of Sasang Constitutional Medicine: Diagnosis and Algorithm (소양인체질병증 임상진료지침: 진단 및 알고리즘)

  • Lee, Jun-Hee;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.26 no.3
    • /
    • pp.224-240
    • /
    • 2014
  • Objectives This research was proposed to present Clinical Practice Guideline(CPG) for Soyangin Disease of Sasang Constitutional Medicine(SCM): Diagnosis and Algorithm. This CPG was developed by the national-wide experts committee consisting of SCM professors. Methods We searched the literature and articles related to Soyangin Symptomatology diagnosis and algorithm. For developing diagnosis and algorithm, we searched the classification, ordinary symptom, present symptom of the Soyangin Symptomatology. Results & Conclusions We classify the Soyangin Symptomatology by 4 steps: Exterior-Interior disease, favorable-unfavorable pattern, mild-moderate-severe-critical pattern (initial-advanced pattern). And at the unfavorable pattern, ordinary symptom is very important. So doctors need to focus on the symptom of unfavorable's ordinary symptom such as temperament inclined symptom, diarrhea, and diurnal body fever.

An Improved PSO Algorithm for the Classification of Multiple Power Quality Disturbances

  • Zhao, Liquan;Long, Yan
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.116-126
    • /
    • 2019
  • In this paper, an improved one-against-one support vector machine algorithm is used to classify multiple power quality disturbances. To solve the problem of parameter selection, an improved particle swarm optimization algorithm is proposed to optimize the parameters of the support vector machine. By proposing a new inertia weight expression, the particle swarm optimization algorithm can effectively conduct a global search at the outset and effectively search locally later in a study, which improves the overall classification accuracy. The experimental results show that the improved particle swarm optimization method is more accurate than a grid search algorithm optimization and other improved particle swarm optimizations with regard to its classification of multiple power quality disturbances. Furthermore, the number of support vectors is reduced.

Machine Learning-based Bedscore Stage Classification Algorithm (머신러닝 기반 욕창 단계 분류 알고리즘)

  • Cho, Young-bok;Yoo, Ha-na
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.326-327
    • /
    • 2022
  • This study is an algorithm for clinical decision-making using machine learning, and it is an algorithm to classify pressure sores to be used in the development of a system to help prevent pressure sores when nursing staff care for patients who lie down for a long time. As a result of machine learning, the learning accuracy of the algorithm was 82.14% and the test accuracy was 82.58%.

  • PDF

A Color-Based Medicine Bottle Classification Method Robust to Illumination Variations (조명 변화에 강인한 컬러정보 기반의 약병 분류 기법)

  • Kim, Tae-Hun;Kim, Gi-Seung;Song, Young-Chul;Ryu, Gang-Soo;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.57-64
    • /
    • 2013
  • In this paper, we propose the classification method of medicine bottle images using the features with color and size information. It is difficult to classify with size feature only, because there are many similar sizes of bottles. Therefore, we suggest a classification method based on color information, which robust to illumination variations. First, we extract MBR(Minimum Boundary Rectangle) of medicine bottle area using Binary Threshold of Red, Green, and Blue in image and classify images with size. Then, hue information and RGB color average rate are used to classify image, which features are robust to lighting variations. Finally, using SURF(Speed Up Robust Features) algorithm, corresponding image can be found from candidates with previous extracted features. The proposed method makes to reduce execution time and minimize the error rate and is confirmed to be reliable and efficient from experiment.

An Integrated Method for Application-level Internet Traffic Classification

  • Choi, Mi-Jung;Park, Jun-Sang;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.838-856
    • /
    • 2014
  • Enhanced network speed and the appearance of various applications have recently resulted in the rapid increase of Internet users and the explosive growth of network traffic. Under this circumstance, Internet users are eager to receive reliable and Quality of Service (QoS)-guaranteed services. To provide reliable network services, network managers need to perform control measures involving dropping or blocking each traffic type. To manage a traffic type, it is necessary to rapidly measure and correctly analyze Internet traffic as well as classify network traffic according to applications. Such traffic classification result provides basic information for ensuring service-specific QoS. Several traffic classification methodologies have been introduced; however, there has been no favorable method in achieving optimal performance in terms of accuracy, completeness, and applicability in a real network environment. In this paper, we propose a method to classify Internet traffic as the first step to provide stable network services. We integrate the existing methodologies to compensate their weaknesses and to improve the overall accuracy and completeness of the classification. We prioritize the existing methodologies, which complement each other, in our integrated classification system.

CCTV Based Gender Classification Using a Convolutional Neural Networks (컨볼루션 신경망을 이용한 CCTV 영상 기반의 성별구분)

  • Kang, Hyun Gon;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1943-1950
    • /
    • 2016
  • Recently, gender classification has attracted a great deal of attention in the field of video surveillance system. It can be useful in many applications such as detecting crimes for women and business intelligence. In this paper, we proposed a method which can detect pedestrians from CCTV video and classify the gender of the detected objects. So far, many algorithms have been proposed to classify people according the their gender. This paper presents a gender classification using convolutional neural network. The detection phase is performed by AdaBoost algorithm based on Haar-like features and LBP features. Classifier and detector is trained with data-sets generated form CCTV images. The experimental results of the proposed method is male matching rate of 89.9% and the results shows 90.7% of female videos. As results of simulations, it is shown that the proposed gender classification is better than conventional classification algorithm.

Karyotype Classification of The Chromosome Image using Hierarchical Neural Network (계층형 신경회로망을 이용한 염색체 영상의 핵형 분류)

  • 장용훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.8
    • /
    • pp.1045-1054
    • /
    • 2001
  • To improve classification accuracy in this paper, we proposed an algorithm for the chromosome image reconstruction in the image preprocessing part and also proposed the pattern classification method using the hierarchical multilayer neural network(HMNN) to classify the chromosome karyotype. It reconstructed chromosome images for twenty normal human chromosome by the image reconstruction algorithm. The four morphological and ten density feature parameters were extracted from the 920 reconstructed chromosome images. The each combined feature parameters of ten human chromosome images were used to learn HMNN and the rest of them were used to classify the chromosome images. The experimental results in this paper were composed to optimized HMNN and also obtained about 98.26% to recognition ratio.

  • PDF

Classification of DNA Pattern Using Negative Selection (부정 선택을 이용한 DNA의 패턴 분류)

  • Sim, Kwee-Bo;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.551-556
    • /
    • 2004
  • According to revealing the DNA sequence of human and living things, it increases that a demand on a new computational processing method which utilizes DNA sequence information. In this paper we propose a classification algorithm based on negative selection of the immune system to classify DNA patterns. Negative selection is the process to determine an antigenic receptor that recognize antigens, nonself cells. The immune cells use this antigen receptor to judge whether a self or not. If one composes n group of antigenic receptor for n different patterns, they can classify into n patterns. In this paper we propose a pattern classification algorithm based on negative selection in nucleotide base level and amino acid level.