• 제목/요약/키워드: Classifiers

검색결과 745건 처리시간 0.044초

Multiple Moving Person Tracking Based on the IMPRESARIO Simulator

  • Kim, Hyun-Deok;Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • 제6권3호
    • /
    • pp.331-336
    • /
    • 2008
  • In this paper, we propose a real-time people tracking system with multiple CCD cameras for security inside the building. To achieve this goal, we present a method for 3D walking human tracking based on the IMPRESARIO framework incorporating cascaded classifiers into hypothesis evaluation. The efficiency of adaptive selection of cascaded classifiers has been also presented. The camera is mounted from the ceiling of the laboratory so that the image data of the passing people are fully overlapped. The implemented system recognizes people movement along various directions. To track people even when their images are partially overlapped, the proposed system estimates and tracks a bounding box enclosing each person in the tracking region. The approximated convex hull of each individual in the tracking area is obtained to provide more accurate tracking information. We have shown the improvement of reliability for likelihood calculation by using cascaded classifiers. Experimental results show that the proposed method can smoothly and effectively detect and track walking humans through environments such as dense forests.

종족 유전 알고리즘을 이용한 MLP 분류기의 구조학습 (A structural learning of MLP classifiers using species genetic algorithms)

  • 신성효;김상운
    • 전자공학회논문지C
    • /
    • 제35C권2호
    • /
    • pp.48-55
    • /
    • 1998
  • Structural learning methods of MLP classifiers for a given application using genetic algorithms have been studied. In the methods, however, the search space for an optimal structure is increased exponentially for the physical application of high diemension-multi calss. In this paperwe propose a method of MLP classifiers using species genetic algorithm(SGA), a modified GA. In SGA, total search space is divided into several subspaces according to the number of hidden units. Each of the subdivided spaces is called "species". We eliminate low promising species from the evoluationary process in order to reduce the search space. experimental results show that the proposed method is more efficient than the conventional genetic algorithm methods in the aspect of the misclassification ratio, the learning rate, and the structure.structure.

  • PDF

Artificial Neural Networks for Interest Rate Forecasting based on Structural Change : A Comparative Analysis of Data Mining Classifiers

  • Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.641-651
    • /
    • 2003
  • This study suggests the hybrid models for interest rate forecasting using structural changes (or change points). The basic concept of this proposed model is to obtain significant intervals caused by change points, to identify them as the change-point groups, and to reflect them in interest rate forecasting. The model is composed of three phases. The first phase is to detect successive structural changes in the U. S. Treasury bill rate dataset. The second phase is to forecast the change-point groups with data mining classifiers. The final phase is to forecast interest rates with backpropagation neural networks (BPN). Based on this structure, we propose three hybrid models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported model, (2) case-based reasoning (CBR)-supported model, and (3) BPN-supported model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the prediction ability of hybrid models to reflect the structural change.

  • PDF

멀티 프로세서 시스템에 의한 고속 문자인식 (High Speed Character Recognition by Multiprocessor System)

  • 최동혁;류성원;최성남;김학수;이용균;박규태
    • 전자공학회논문지B
    • /
    • 제30B권2호
    • /
    • pp.8-18
    • /
    • 1993
  • A multi-font, multi-size and high speed character recognition system is designed. The design principles are simpilcity of algorithm, adaptibility, learnability, hierachical data processing and attention by feed back. For the multi-size character recognition, the extracted character images are normalized. A hierachical classifier classifies the feature vectors. Feature is extracted by applying the directional receptive field after the directional dege filter processing. The hierachical classifier is consist of two pre-classifiers and one decision making classifier. The effect of two pre-classifiers is prediction to the final decision making classifier. With the pre-classifiers, the time to compute the distance of the final classifier is reduced. Recognition rate is 95% for the three documents printed in three kinds of fonts, total 1,700 characters. For high speed implemention, a multiprocessor system with the ring structure of four transputers is implemented, and the recognition speed of 30 characters per second is aquired.

  • PDF

HMM-Net 분류기의 학습 (On learning of HMM-Net classifiers)

  • 김상운;오수환
    • 전자공학회논문지C
    • /
    • 제34C권9호
    • /
    • pp.61-67
    • /
    • 1997
  • The HMM-Net is an architecture for a neural network that implements a hidden markov model(HMM). The architecture is developed for the purpose of combining the classification power of neural networks with the time-domain modeling capability of HMMs. Criteria which are used for learning HMM_Net classifiers are maximum likelihood(ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numbers from /young/to/koo/ show that in the binary inputs the performance of MMSE is better than the others, while in the fuzzy inputs the performance of MMI is better than the others.

  • PDF

Detection of Rice Disease Using Bayes' Classifier and Minimum Distance Classifier

  • Sharma, Vikas;Mir, Aftab Ahmad;Sarwr, Abid
    • Journal of Multimedia Information System
    • /
    • 제7권1호
    • /
    • pp.17-24
    • /
    • 2020
  • Rice (Oryza Sativa) is an important source of food for the people of our country, even though of world also .It is also considered as the staple food of our country and we know agriculture is the main source country's economy, hence the crop of Rice plays a vital role over it. For increasing the growth and production of rice crop, ground-breaking technique for the detection of any type of disease occurring in rice can be detected and categorization of rice crop diseases has been proposed in this paper. In this research paper, we perform comparison between two classifiers namely MDC and Bayes' classifiers Survey over different digital image processing techniques has been done for the detection of disease in rice crops. The proposed technique involves the samples of 200 digital images of diseased rice leaf images of five different types of rice crop diseases. The overall accuracy that we achieved by using Bayes' Classifiers and MDC are 69.358 percent and 81.06 percent respectively.

Movie Review Classification Based on a Multiple Classifier

  • Tsutsumi, Kimitaka;Shimada, Kazutaka;Endo, Tsutomu
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.481-488
    • /
    • 2007
  • In this paper, we propose a method to classify movie review documents into positive or negative opinions. There are several approaches to classify documents. The previous studies, however, used only a single classifier for the classification task. We describe a multiple classifier for the review document classification task. The method consists of three classifiers based on SVMs, ME and score calculation. We apply two voting methods and SVMs to the integration process of single classifiers. The integrated methods improved the accuracy as compared with the three single classifiers. The experimental results show the effectiveness of our method.

  • PDF

전자메일 자동관리 시스템을 위한 전자메일 분류기의 개발 (Development of e-Mail Classifiers for e-Mail Response Management Systems)

  • 김국표;권영식
    • 한국IT서비스학회지
    • /
    • 제2권2호
    • /
    • pp.87-95
    • /
    • 2003
  • With the increasing proliferation of World Wide Web, electronic mail systems have become very widely used communication tools. Researches on e-mail classification have been very important in that e-mail classification system is a major engine for e-mail response management systems which mine unstructured e-mail messages and automatically categorize them. in this research we develop e-mail classifiers for e-mail Response Management Systems (ERMS) using naive bayesian learning and centroid-based classification. We analyze which method performs better under which conditions, comparing classification accuracies which may depend on the structure, the size of training data set and number of classes, using the different data set of an on-line shopping mall and a credit card company. The developed e-mail classifiers have been successfully implemented in practice. The experimental results show that naive bayesian learning performs better, while centroid-based classification is more robust in terms of classification accuracy.

A New Incremental Learning Algorithm with Probabilistic Weights Using Extended Data Expression

  • Yang, Kwangmo;Kolesnikova, Anastasiya;Lee, Won Don
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.258-267
    • /
    • 2013
  • New incremental learning algorithm using extended data expression, based on probabilistic compounding, is presented in this paper. Incremental learning algorithm generates an ensemble of weak classifiers and compounds these classifiers to a strong classifier, using a weighted majority voting, to improve classification performance. We introduce new probabilistic weighted majority voting founded on extended data expression. In this case class distribution of the output is used to compound classifiers. UChoo, a decision tree classifier for extended data expression, is used as a base classifier, as it allows obtaining extended output expression that defines class distribution of the output. Extended data expression and UChoo classifier are powerful techniques in classification and rule refinement problem. In this paper extended data expression is applied to obtain probabilistic results with probabilistic majority voting. To show performance advantages, new algorithm is compared with Learn++, an incremental ensemble-based algorithm.

Data mining approach to predicting user's past location

  • Lee, Eun Min;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권11호
    • /
    • pp.97-104
    • /
    • 2017
  • Location prediction has been successfully utilized to provide high quality of location-based services to customers in many applications. In its usual form, the conventional type of location prediction is to predict future locations based on user's past movement history. However, as location prediction needs are expanded into much complicated cases, it becomes necessary quite frequently to make inference on the locations that target user visited in the past. Typical cases include the identification of locations that infectious disease carriers may have visited before, and crime suspects may have dropped by on a certain day at a specific time-band. Therefore, primary goal of this study is to predict locations that users visited in the past. Information used for this purpose include user's demographic information and movement histories. Data mining classifiers such as Bayesian network, neural network, support vector machine, decision tree were adopted to analyze 6868 contextual dataset and compare classifiers' performance. Results show that general Bayesian network is the most robust classifier.