• Title/Summary/Keyword: Classification accuracy

Search Result 3,065, Processing Time 0.031 seconds

Deep Learning-based Abnormal Behavior Detection System for Dementia Patients (치매 환자를 위한 딥러닝 기반 이상 행동 탐지 시스템)

  • Kim, Kookjin;Lee, Seungjin;Kim, Sungjoong;Kim, Jaegeun;Shin, Dongil;shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.133-144
    • /
    • 2020
  • The number of elderly people with dementia is increasing as fast as the proportion of older people due to aging, which creates a social and economic burden. In particular, dementia care costs, including indirect costs such as increased care costs due to lost caregiver hours and caregivers, have grown exponentially over the years. In order to reduce these costs, it is urgent to introduce a management system to care for dementia patients. Therefore, this study proposes a sensor-based abnormal behavior detection system to manage dementia patients who live alone or in an environment where they cannot always take care of dementia patients. Existing studies were merely evaluating behavior or evaluating normal behavior, and there were studies that perceived behavior by processing images, not data from sensors. In this study, we recognized the limitation of real data collection and used both the auto-encoder, the unsupervised learning model, and the LSTM, the supervised learning model. Autoencoder, an unsupervised learning model, trained normal behavioral data to learn patterns for normal behavior, and LSTM further refined classification by learning behaviors that could be perceived by sensors. The test results show that each model has about 96% and 98% accuracy and is designed to pass the LSTM model when the autoencoder outlier has more than 3%. The system is expected to effectively manage the elderly and dementia patients who live alone and reduce the cost of caring.

Traffic Flooding Attack Detection on SNMP MIB Using SVM (SVM을 이용한 SNMP MIB에서의 트래픽 폭주 공격 탐지)

  • Yu, Jae-Hak;Park, Jun-Sang;Lee, Han-Sung;Kim, Myung-Sup;Park, Dai-Hee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Recently, as network flooding attacks such as DoS/DDoS and Internet Worm have posed devastating threats to network services, rapid detection and proper response mechanisms are the major concern for secure and reliable network services. However, most of the current Intrusion Detection Systems(IDSs) focus on detail analysis of packet data, which results in late detection and a high system burden to cope with high-speed network environment. In this paper we propose a lightweight and fast detection mechanism for traffic flooding attacks. Firstly, we use SNMP MIB statistical data gathered from SNMP agents, instead of raw packet data from network links. Secondly, we use a machine learning approach based on a Support Vector Machine(SVM) for attack classification. Using MIB and SVM, we achieved fast detection with high accuracy, the minimization of the system burden, and extendibility for system deployment. The proposed mechanism is constructed in a hierarchical structure, which first distinguishes attack traffic from normal traffic and then determines the type of attacks in detail. Using MIB data sets collected from real experiments involving a DDoS attack, we validate the possibility of our approaches. It is shown that network attacks are detected with high efficiency, and classified with low false alarms.

A Study on the Applicability of Deep Learning Algorithm for Detection and Resolving of Occlusion Area (영상 폐색영역 검출 및 해결을 위한 딥러닝 알고리즘 적용 가능성 연구)

  • Bae, Kyoung-Ho;Park, Hong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.305-313
    • /
    • 2019
  • Recently, spatial information is being constructed actively based on the images obtained by drones. Because occlusion areas occur due to buildings as well as many obstacles, such as trees, pedestrians, and banners in the urban areas, an efficient way to resolve the problem is necessary. Instead of the traditional way, which replaces the occlusion area with other images obtained at different positions, various models based on deep learning were examined and compared. A comparison of a type of feature descriptor, HOG, to the machine learning-based SVM, deep learning-based DNN, CNN, and RNN showed that the CNN is used broadly to detect and classify objects. Until now, many studies have focused on the development and application of models so that it is impossible to select an optimal model. On the other hand, the upgrade of a deep learning-based detection and classification technique is expected because many researchers have attempted to upgrade the accuracy of the model as well as reduce the computation time. In that case, the procedures for generating spatial information will be changed to detect the occlusion area and replace it with simulated images automatically, and the efficiency of time, cost, and workforce will also be improved.

An Optimized Combination of π-fuzzy Logic and Support Vector Machine for Stock Market Prediction (주식 시장 예측을 위한 π-퍼지 논리와 SVM의 최적 결합)

  • Dao, Tuanhung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.43-58
    • /
    • 2014
  • As the use of trading systems has increased rapidly, many researchers have become interested in developing effective stock market prediction models using artificial intelligence techniques. Stock market prediction involves multifaceted interactions between market-controlling factors and unknown random processes. A successful stock prediction model achieves the most accurate result from minimum input data with the least complex model. In this research, we develop a combination model of ${\pi}$-fuzzy logic and support vector machine (SVM) models, using a genetic algorithm to optimize the parameters of the SVM and ${\pi}$-fuzzy functions, as well as feature subset selection to improve the performance of stock market prediction. To evaluate the performance of our proposed model, we compare the performance of our model to other comparative models, including the logistic regression, multiple discriminant analysis, classification and regression tree, artificial neural network, SVM, and fuzzy SVM models, with the same data. The results show that our model outperforms all other comparative models in prediction accuracy as well as return on investment.

Network Anomaly Detection Technologies Using Unsupervised Learning AutoEncoders (비지도학습 오토 엔코더를 활용한 네트워크 이상 검출 기술)

  • Kang, Koohong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.617-629
    • /
    • 2020
  • In order to overcome the limitations of the rule-based intrusion detection system due to changes in Internet computing environments, the emergence of new services, and creativity of attackers, network anomaly detection (NAD) using machine learning and deep learning technologies has received much attention. Most of these existing machine learning and deep learning technologies for NAD use supervised learning methods to learn a set of training data set labeled 'normal' and 'attack'. This paper presents the feasibility of the unsupervised learning AutoEncoder(AE) to NAD from data sets collecting of secured network traffic without labeled responses. To verify the performance of the proposed AE mode, we present the experimental results in terms of accuracy, precision, recall, f1-score, and ROC AUC value on the NSL-KDD training and test data sets. In particular, we model a reference AE through the deep analysis of diverse AEs varying hyper-parameters such as the number of layers as well as considering the regularization and denoising effects. The reference model shows the f1-scores 90.4% and 89% of binary classification on the KDDTest+ and KDDTest-21 test data sets based on the threshold of the 82-th percentile of the AE reconstruction error of the training data set.

Machine Learning Based Automated Source, Sink Categorization for Hybrid Approach of Privacy Leak Detection (머신러닝 기반의 자동화된 소스 싱크 분류 및 하이브리드 분석을 통한 개인정보 유출 탐지 방법)

  • Shim, Hyunseok;Jung, Souhwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.657-667
    • /
    • 2020
  • The Android framework allows apps to take full advantage of personal information through granting single permission, and does not determine whether the data being leaked is actual personal information. To solve these problems, we propose a tool with static/dynamic analysis. The tool analyzes the Source and Sink used by the target app, to provide users with information on what personal information it used. To achieve this, we extracted the Source and Sink through Control Flow Graph and make sure that it leaks the user's privacy when there is a Source-to-Sink flow. We also used the sensitive permission information provided by Google to obtain information from the sensitive API corresponding to Source and Sink. Finally, our dynamic analysis tool runs the app and hooks information from each sensitive API. In the hooked data, we got information about whether user's personal information is leaked through this app, and delivered to user. In this process, an automated Source/Sink classification model was applied to collect latest Source/Sink information, and the we categorized latest release version of Android(9.0) with 88.5% accuracy. We evaluated our tool on 2,802 APKs, and found 850 APKs that leak personal information.

Mechanism-based View of Innovative Capability Building in POSCO (메커니즘 관점에서 본 조직변신과 포스코의 혁신패턴 연구)

  • Kim, So-Hyung
    • Journal of Distribution Science
    • /
    • v.11 no.6
    • /
    • pp.59-65
    • /
    • 2013
  • Purpose - Studies of mechanism as a competitive strategy, a relatively new field in the study of strategic management research, has recently drawn the attention of the business management scholars. The literature has so far proposed the subjective-based view, environment-based view, and the resource-based view in its analyses of firm management. Hence, it is highly likely for the firm management to be reasonably thought of as a combination of and interaction among the three key elements of subject, environment, and resources this is the mechanism-based view (MBV). It is reasonable to consider firm management to be the combination of and interaction among the three key elements of subject, environment, and resources. The overall dynamic process that integrates these three elements and creates functional harmony is identified as the mechanism, the principle of firm management. Much of the extant literatures on MBV has mainly focused on case studies, a qualitative approach prone to subjectivity of the researcher, although the intuition from the study may lead to meaningful insights into a firm-specific mechanism. This study's focus is also on case analysis, but it still attempts a quantitative approach in order to reach a scientific and systematic understanding of the MBV. Research design, data, and methodology - I used both a qualitative and quantitative approach to a single model, given the complexity of the innovation processes. I conducted in-depth interviews with POSCO employees-20 from general management, two from human resources, eight from information technology, five from finance and accounting, and five from production and logistics management. Once the innovative events were selected, the interview results were double-checked by the interviewees themselves to ensure the accuracy of the answers recorded. Based on the interview, I then conducted statistical validation using the survey results as well. Results - This study analyzes the building process of innovation and the effect of the mechanism pattern on innovation by examining the case of POSCO, which has survived over the past 21 years. I apply a new analytical tool to study mechanism innovation types, perform a new classification, and describe the interrelationships among the mechanism factors. This process allows me to see how the "Subject"factor interacts with the other factors. I found that, in the innovation process of the adoption stage, Subject had a mediating effect but that the mediating effect of resource and performance was smaller than the effect of Subject on performance alone. During the implementation stage, the mediating effect of Subject increased. Conclusion - Therefore, I have confirmed that the subject utilizes resources reasonably and efficiently. I have also advanced mechanism studies: whereas the field's research methods have been largely confined to single case studies, I have used both qualitative and quantitative methods to examine the relationships among mechanisms.

Performance Evaluation and Forecasting Model for Retail Institutions (유통업체의 부실예측모형 개선에 관한 연구)

  • Kim, Jung-Uk
    • Journal of Distribution Science
    • /
    • v.12 no.11
    • /
    • pp.77-83
    • /
    • 2014
  • Purpose - The National Agricultural Cooperative Federation of Korea and National Fisheries Cooperative Federation of Korea have prosecuted both financial and retail businesses. As cooperatives are public institutions and receive government support, their sound management is required by the Financial Supervisory Service in Korea. This is mainly managed by CAEL, which is changed by CAMEL. However, NFFC's business section, managing the finance and retail businesses, is unified and evaluated; the CAEL model has an insufficient classification to evaluate the retail industry. First, there is discrimination power as regards CAEL. Although the retail business sector union can receive a higher rating on a CAEL model, defaults have often been reported. Therefore, a default prediction model is needed to support a CAEL model. As we have the default prediction model using a subdivision of indexes and statistical methods, it can be useful to have a prevention function through the estimation of the retail sector's default probability. Second, separating the difference between the finance and retail business sectors is necessary. Their businesses have different characteristics. Based on various management indexes that have been systematically managed by the National Fisheries Cooperative Federation of Korea, our model predicts retail default, and is better than the CAEL model in its failure prediction because it has various discriminative financial ratios reflecting the retail industry situation. Research design, data, and methodology - The model to predict retail default was presented using logistic analysis. To develop the predictive model, we use the retail financial statements of the NFCF. We consider 93 unions each year from 2006 to 2012 to select confident management indexes. We also adapted the statistical power analysis that is a t-test, logit analysis, AR (accuracy ratio), and AUROC (Area Under Receiver Operating Characteristic) analysis. Finally, through the multivariate logistic model, we show that it is excellent in its discrimination power and higher in its hit ratio for default prediction. We also evaluate its usefulness. Results - The statistical power analysis using the AR (AUROC) method on the short term model shows that the logistic model has excellent discrimination power, with 84.6%. Further, it is higher in its hit ratio for failure (prediction) of total model, at 94%, indicating that it is temporally stable and useful for evaluating the management status of retail institutions. Conclusions - This model is useful for evaluating the management status of retail union institutions. First, subdividing CAEL evaluation is required. The existing CAEL evaluation is underdeveloped, and discrimination power falls. Second, efforts to develop a varied and rational management index are continuously required. An index reflecting retail industry characteristics needs to be developed. However, extending this study will need the following. First, it will require a complementary default model reflecting size differences. Second, in the case of small and medium retail, it will need non-financial information. Therefore, it will be a hybrid default model reflecting financial and non-financial information.

Building an Analytical Platform of Big Data for Quality Inspection in the Dairy Industry: A Machine Learning Approach (유제품 산업의 품질검사를 위한 빅데이터 플랫폼 개발: 머신러닝 접근법)

  • Hwang, Hyunseok;Lee, Sangil;Kim, Sunghyun;Lee, Sangwon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.125-140
    • /
    • 2018
  • As one of the processes in the manufacturing industry, quality inspection inspects the intermediate products or final products to separate the good-quality goods that meet the quality management standard and the defective goods that do not. The manual inspection of quality in a mass production system may result in low consistency and efficiency. Therefore, the quality inspection of mass-produced products involves automatic checking and classifying by the machines in many processes. Although there are many preceding studies on improving or optimizing the process using the data generated in the production process, there have been many constraints with regard to actual implementation due to the technical limitations of processing a large volume of data in real time. The recent research studies on big data have improved the data processing technology and enabled collecting, processing, and analyzing process data in real time. This paper aims to propose the process and details of applying big data for quality inspection and examine the applicability of the proposed method to the dairy industry. We review the previous studies and propose a big data analysis procedure that is applicable to the manufacturing sector. To assess the feasibility of the proposed method, we applied two methods to one of the quality inspection processes in the dairy industry: convolutional neural network and random forest. We collected, processed, and analyzed the images of caps and straws in real time, and then determined whether the products were defective or not. The result confirmed that there was a drastic increase in classification accuracy compared to the quality inspection performed in the past.

Two Class Approximation of TLB (Tomato Late Blight) Activity Data (토마토 역병균 항균 활성 데이터의 이분번 근사모델링)

  • Hahn, Hoh-Gyu;M.D., Ashek Ali;Cho, Seung-Joo
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.2
    • /
    • pp.140-145
    • /
    • 2005
  • Quantitative Structure Activity Relationship (QSAR) assumes the relatedness between physical property and biological activity. However, activity data measured at single concentration such as percent activity have not been used extensively for modeling purpose. This probably comes from the fact that these values are qualitative instead of quantitative. To utilize percent activity data for molecular modeling, we classified the whole data into two classes. One class represents the active while the other signifies the inactive. The percent activity data of ${\beta}$-Ketoacetoanilides measured for TLB (Tomato Late Blight) were investigated. CoMFA (Comparative Molecular Field Analysis) was used as a discriminant function. Using CoMFA provides 3D (three dimensional) information, which is crucial for chemical insight. It can also serve as a predictive model. The resultant model classified the given data correctly (98%). When LOO (leave-one-out) crossvalidation procedure was applied, the classification accuracy was 69%. Therefore two class approximation of percent activity data with CoMFA can be utilized to understand the relationship between chemical structure and biological activity and design subsequent chemical analogs.