• 제목/요약/키워드: Classification Problem

검색결과 1,741건 처리시간 0.027초

선택적 계층 분류를 이용한 MODIS 자료 기반 작물 분류 (MODIS Data-based Crop Classification using Selective Hierarchical Classification)

  • 김예슬;이경도;나상일;홍석영;박노욱;유희영
    • 대한원격탐사학회지
    • /
    • 제32권3호
    • /
    • pp.235-244
    • /
    • 2016
  • MODIS 자료를 이용한 대규모 작물 분류에는 MODIS 자료의 상대적으로 낮은 공간해상도로 인한 분광학적 혼재 양상이 두드러지게 나타난다. 이러한 분광학적 혼재를 완화하기 위하여 이 연구에서는 작물의 분광특성을 이용하여 특정 작물의 계층을 선택적으로 구분하고 상세 분류를 수행하는 선택적 계층 분류 방법론을 제안하였다. 제안 방법론에서는 특정 작물에 대한 선택적 분류를 수행함으로써 작물간의 혼재를 완화하고 구분력을 향상시킬 수 있다. 제안 방법론의 적용성 평가에는 중국 길림성의 길림시를 대상으로 MODIS 정규식생지수 자료와 근적외선 자료를 이용한 작물 분류의 사례 연구를 수행하였다. 먼저 근적외선 자료의 무감독 분류를 수행하여 벼의 재배지역을 우선적으로 추출한 후에, 시계열 정규식생지수 자료를 이용하여 벼 재배지역이 아닌 영역을 대상으로 옥수수와 콩의 상세 분류를 수행하였다. 사례 연구 결과, 제안 방법론은 유사한 분광특성을 갖는 작물의 계층을 선택적으로 구분함으로써 기존 시계열 정규식생지수 자료와 근적외선 자료를 함께 이용하는 감독 분류 결과보다 향상된 분류 정확도를 나타내었다. 따라서 신뢰성 있는 작물 구분도 제작에 제안 방법론이 효과적으로 사용될 수 있을 것으로 기대된다.

A FINDPATH PROBLEM IN THE PRESENCE OF MOVING OBSTACLES

  • Ha, Jun-Hong;Shim, Jae-Dong
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.125-137
    • /
    • 2000
  • A solution of the findpath problem in which a moving object in required to avoid moving obstacles and move to the designated target in the plane is porcided via the second method of Lyapunov. This paper presents an new control designed by a family of piecewise Lyapunov functions to solve a findpath problem and gives some simultion results of that.

An Active Co-Training Algorithm for Biomedical Named-Entity Recognition

  • Munkhdalai, Tsendsuren;Li, Meijing;Yun, Unil;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • 제8권4호
    • /
    • pp.575-588
    • /
    • 2012
  • Exploiting unlabeled text data with a relatively small labeled corpus has been an active and challenging research topic in text mining, due to the recent growth of the amount of biomedical literature. Biomedical named-entity recognition is an essential prerequisite task before effective text mining of biomedical literature can begin. This paper proposes an Active Co-Training (ACT) algorithm for biomedical named-entity recognition. ACT is a semi-supervised learning method in which two classifiers based on two different feature sets iteratively learn from informative examples that have been queried from the unlabeled data. We design a new classification problem to measure the informativeness of an example in unlabeled data. In this classification problem, the examples are classified based on a joint view of a feature set to be informative/non-informative to both classifiers. To form the training data for the classification problem, we adopt a query-by-committee method. Therefore, in the ACT, both classifiers are considered to be one committee, which is used on the labeled data to give the informativeness label to each example. The ACT method outperforms the traditional co-training algorithm in terms of f-measure as well as the number of training iterations performed to build a good classification model. The proposed method tends to efficiently exploit a large amount of unlabeled data by selecting a small number of examples having not only useful information but also a comprehensive pattern.

불균형 데이터 분류를 위한 딥러닝 기반 오버샘플링 기법 (A Deep Learning Based Over-Sampling Scheme for Imbalanced Data Classification)

  • 손민재;정승원;황인준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권7호
    • /
    • pp.311-316
    • /
    • 2019
  • 분류 문제는 주어진 입력 데이터에 대해 해당 데이터의 클래스를 예측하는 문제로, 자주 쓰이는 방법 중의 하나는 주어진 데이터셋을 사용하여 기계학습 알고리즘을 학습시키는 것이다. 이런 경우 분류하고자 하는 클래스에 따른 데이터의 분포가 균일한 데이터셋이 이상적이지만, 불균형한 분포를 가지고 경우 제대로 분류하지 못하는 문제가 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 Conditional Generative Adversarial Networks(CGAN)을 활용하여 데이터 수의 균형을 맞추는 오버샘플링 기법을 제안한다. CGAN은 Generative Adversarial Networks(GAN)에서 파생된 생성 모델로, 데이터의 특징을 학습하여 실제 데이터와 유사한 데이터를 생성할 수 있다. 따라서 CGAN이 데이터 수가 적은 클래스의 데이터를 학습하고 생성함으로써 불균형한 클래스 비율을 맞추어 줄 수 있으며, 그에 따라 분류 성능을 높일 수 있다. 실제 수집된 데이터를 이용한 실험을 통해 CGAN을 활용한 오버샘플링 기법이 효과가 있음을 보이고 기존 오버샘플링 기법들과 비교하여 기존 기법들보다 우수함을 입증하였다.

Enhancing the Narrow-down Approach to Large-scale Hierarchical Text Classification with Category Path Information

  • Oh, Heung-Seon;Jung, Yuchul
    • Journal of Information Science Theory and Practice
    • /
    • 제5권3호
    • /
    • pp.31-47
    • /
    • 2017
  • The narrow-down approach, separately composed of search and classification stages, is an effective way of dealing with large-scale hierarchical text classification. Recent approaches introduce methods of incorporating global, local, and path information extracted from web taxonomies in the classification stage. Meanwhile, in the case of utilizing path information, there have been few efforts to address existing limitations and develop more sophisticated methods. In this paper, we propose an expansion method to effectively exploit category path information based on the observation that the existing method is exposed to a term mismatch problem and low discrimination power due to insufficient path information. The key idea of our method is to utilize relevant information not presented on category paths by adding more useful words. We evaluate the effectiveness of our method on state-of-the art narrow-down methods and report the results with in-depth analysis.

Development of Personal-Credit Evaluation System Using Real-Time Neural Learning Mechanism

  • Park, Jong U.;Park, Hong Y.;Yoon Chung
    • 정보기술과데이타베이스저널
    • /
    • 제2권2호
    • /
    • pp.71-85
    • /
    • 1995
  • Many research results conducted by neural network researchers have claimed that the classification accuracy of neural networks is superior to, or at least equal to that of conventional methods. However, in series of neural network classifications, it was found that the classification accuracy strongly depends on the characteristics of training data set. Even though there are many research reports that the classification accuracy of neural networks can be different, depending on the composition and architecture of the networks, training algorithm, and test data set, very few research addressed the problem of classification accuracy when the basic assumption of data monotonicity is violated, In this research, development project of automated credit evaluation system is described. The finding was that arrangement of training data is critical to successful implementation of neural training to maintain monotonicity of the data set, for enhancing classification accuracy of neural networks.

  • PDF

Bitmap Intersection Lookup (BIL);A Packet Classification's Algorithm with Rules Updating

  • Khunkitti, Akharin;Promrit, Nuttachot
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.767-772
    • /
    • 2005
  • The Internet is a packet switched network which offers best-effort service, but current IP network provide enhanced services such Quality of Services, Virtual Private Network (VPN) services, Distribute Firewall and IP Security Gateways. All such services need packet classification for determining the flow. The problem is performing scalable packet classification at wire speeds even as rule databases increase in size. Therefore, this research offer packet classification algorithm that increase classifier performance when working with enlarge rules database by rearrange rule structure into Bitmap Intersection Lookup (BIL) tables. It will use packet's header field for looking up BIL tables and take the result with intersection operation by logical AND. This approach will use simple algorithm and rule structure, it make classifier have high search speed and fast updates.

  • PDF

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • 제5권3호
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.

On an Equal Mean Quadratic Classification Rule With Unknown Prior Probabilities

  • Kim, Hea-Jung;Inada, Koichi
    • 품질경영학회지
    • /
    • 제23권3호
    • /
    • pp.126-139
    • /
    • 1995
  • We describe a formal approach to the construction of optimal classification rule for the two-group normal classification with equal population mean problem. Based on the utility function of Bernardo, we suggest a balanced design for the classification and construct the optimal rule under the balanced design condition. The rule is characterized by a constrained minimization of total risk of misclassification, the constraint of which is constructed by the process of equation between expected utilities of the two group conditional densities. The efficacy of the suggested rule is examined through numerical studies. This indicates that, in case little is known about the relative population sizes, dramatic gains in accuracy of classification result can be achieved.

  • PDF

A Novel Posterior Probability Estimation Method for Multi-label Naive Bayes Classification

  • Kim, Hae-Cheon;Lee, Jaesung
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.1-7
    • /
    • 2018
  • A multi-label classification is to find multiple labels associated with the input pattern. Multi-label classification can be achieved by extending conventional single-label classification. Common extension techniques are known as Binary relevance, Label powerset, and Classifier chains. However, most of the extended multi-label naive bayes classifier has not been able to accurately estimate posterior probabilities because it does not reflect the label dependency. And the remaining extended multi-label naive bayes classifier has a problem that it is unstable to estimate posterior probability according to the label selection order. To estimate posterior probability well, we propose a new posterior probability estimation method that reflects the probability between all labels and labels efficiently. The proposed method reflects the correlation between labels. And we have confirmed through experiments that the extended multi-label naive bayes classifier using the proposed method has higher accuracy then the existing multi-label naive bayes classifiers.