• Title/Summary/Keyword: Classification Method

Search Result 7,215, Processing Time 0.036 seconds

Signomial Classification Method with 0-regularization (L0-정규화를 이용한 Signomial 분류 기법)

  • Lee, Kyung-Sik
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.151-155
    • /
    • 2011
  • In this study, we propose a signomial classification method with 0-regularization (0-)which seeks a sparse signomial function by solving a mixed-integer program to minimize the weighted sum of the 0-norm of the coefficient vector of the resulting function and the $L_1$-norm of loss caused by the function. $SC_0$ gives an explicit description of the resulting function with a small number of terms in the original input space, which can be used for prediction purposes as well as interpretation purposes. We present a practical implementation of $SC_0$ based on the mixed-integer programming and the column generation procedure previously proposed for the signomial classification method with $SL_1$-regularization. Computational study shows that $SC_0$ gives competitive performance compared to other widely used learning methods for classification.

Classification of Induction Machine Faults using Time Frequency Representation and Particle Swarm Optimization

  • Medoued, A.;Lebaroud, A.;Laifa, A.;Sayad, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.170-177
    • /
    • 2014
  • This paper presents a new method of classification of the induction machine faults using Time Frequency Representation, Particle Swarm Optimization and artificial neural network. The essence of the feature extraction is to project from faulty machine to a low size signal time-frequency representation (TFR), which is deliberately designed for maximizing the separability between classes, a distinct TFR is designed for each class. The feature vectors size is optimized using Particle Swarm Optimization method (PSO). The classifier is designed using an artificial neural network. This method allows an accurate classification independently of load level. The introduction of the PSO in the classification procedure has given good results using the reduced size of the feature vectors obtained by the optimization process. These results are validated on a 5.5-kW induction motor test bench.

Gait Type Classification Using Pressure Sensor of Smart Insole

  • Seo, Woo-Duk;Lee, Sung-Sin;Shin, Won-Yong;Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2018
  • In this paper, we propose a gait type classification method based on pressure sensor which reflects various terrain and velocity variations. In order to obtain stable gait classification performance, we divide the whole gait data into several steps by detecting the swing phase, and normalize each step. Then, we extract robust features for both topographic variation and speed variation by using the Null-LDA(Null-Space Linear Discriminant Analysis) method. The experimental results show that the proposed method gives a good performance of gait type classification even though there is a change in the gait velocity and the terrain.

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

Novel Image Classification Method for Small Dataset (작은 데이터 세트에 대한 새로운 이미지 분류 방법)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Shin, Kwang-Seong;Kim, Hyung-Jin;Lee, Jae-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.557-558
    • /
    • 2021
  • In this paper, we propose a new image classification method based on Convolutional Neural Network (CNN), which is mainly used to solve model overfitting and non-convergence and to improve classification accuracy in image classification tasks on small datasets.

  • PDF

Breast Cancer Classification in Ultrasound Images using Semi-supervised method based on Pseudo-labeling

  • Seokmin Han
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.124-131
    • /
    • 2024
  • Breast cancer classification using ultrasound, while widely employed, faces challenges due to its relatively low predictive value arising from significant overlap in characteristics between benign and malignant lesions, as well as operator-dependency. To alleviate these challenges and reduce dependency on radiologist interpretation, the implementation of automatic breast cancer classification in ultrasound image can be helpful. To deal with this problem, we propose a semi-supervised deep learning framework for breast cancer classification. In the proposed method, we could achieve reasonable performance utilizing less than 50% of the training data for supervised learning in comparison to when we utilized a 100% labeled dataset for training. Though it requires more modification, this methodology may be able to alleviate the time-consuming annotation burden on radiologists by reducing the number of annotation, contributing to a more efficient and effective breast cancer detection process in ultrasound images.

Traffic Classification Using Machine Learning Algorithms in Practical Network Monitoring Environments (실제 네트워크 모니터링 환경에서의 ML 알고리즘을 이용한 트래픽 분류)

  • Jung, Kwang-Bon;Choi, Mi-Jung;Kim, Myung-Sup;Won, Young-J.;Hong, James W.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.707-718
    • /
    • 2008
  • The methodology of classifying traffics is changing from payload based or port based to machine learning based in order to overcome the dynamic changes of application's characteristics. However, current state of traffic classification using machine learning (ML) algorithms is ongoing under the offline environment. Specifically, most of the current works provide results of traffic classification using cross validation as a test method. Also, they show classification results based on traffic flows. However, these traffic classification results are not useful for practical environments of the network traffic monitoring. This paper compares the classification results using cross validation with those of using split validation as the test method. Also, this paper compares the classification results based on flow to those based on bytes. We classify network traffics by using various feature sets and machine learning algorithms such as J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, and NaiveBayes. In this paper, we find the best feature sets and the best ML algorithm for classifying traffics using the split validation.

Classification via principal differential analysis

  • Jang, Eunseong;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.135-150
    • /
    • 2021
  • We propose principal differential analysis based classification methods. Computations of squared multiple correlation function (RSQ) and principal differential analysis (PDA) scores are reviewed; in addition, we combine principal differential analysis results with the logistic regression for binary classification. In the numerical study, we compare the principal differential analysis based classification methods with functional principal component analysis based classification. Various scenarios are considered in a simulation study, and principal differential analysis based classification methods classify the functional data well. Gene expression data is considered for real data analysis. We observe that the PDA score based method also performs well.

Temporal Classification Method for Forecasting Power Load Patterns From AMR Data

  • Lee, Heon-Gyu;Shin, Jin-Ho;Park, Hong-Kyu;Kim, Young-Il;Lee, Bong-Jae;Ryu, Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2007
  • We present in this paper a novel power load prediction method using temporal pattern mining from AMR(Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

Learning Reference Vectors by the Nearest Neighbor Network (최근점 이웃망에의한 참조벡터 학습)

  • Kim Baek Sep
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.170-178
    • /
    • 1994
  • The nearest neighbor classification rule is widely used because it is not only simple but the error rate is asymptotically less than twice Bayes theoretical minimum error. But the method basically use the whole training patterns as the reference vectors. so that both storage and classification time increase as the number of training patterns increases. LVQ(Learning Vector Quantization) resolved this problem by training the reference vectors instead of just storing the whole training patterns. But it is a heuristic algorithm which has no theoretic background there is no terminating condition and it requires a lot of iterations to get to meaningful result. This paper is to propose a new training method of the reference vectors. which minimize the given error function. The nearest neighbor network,the network version of the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule and the reference vectors are represented by the weights between the nodes. The network is trained to minimize the error function with respect to the weights by the steepest descent method. The learning algorithm is derived and it is shown that the proposed method can adjust more reference vectors than LVQ in each iteration. Experiment showed that the proposed method requires less iterations and the error rate is smaller than that of LVQ2.

  • PDF