• Title/Summary/Keyword: Classification Accuracy Test

Search Result 400, Processing Time 0.025 seconds

Application of Random Forest Algorithm for the Decision Support System of Medical Diagnosis with the Selection of Significant Clinical Test (의료진단 및 중요 검사 항목 결정 지원 시스템을 위한 랜덤 포레스트 알고리즘 적용)

  • Yun, Tae-Gyun;Yi, Gwan-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1058-1062
    • /
    • 2008
  • In clinical decision support system(CDSS), unlike rule-based expert method, appropriate data-driven machine learning method can easily provide the information of individual feature(clinical test) for disease classification. However, currently developed methods focus on the improvement of the classification accuracy for diagnosis. With the analysis of feature importance in classification, one may infer the novel clinical test sets which highly differentiate the specific diseases or disease states. In this background, we introduce a novel CDSS that integrate a classifier and feature selection module together. Random forest algorithm is applied for the classifier and the feature importance measure. The system selects the significant clinical tests discriminating the diseases by examining the classification error during backward elimination of the features. The superior performance of random forest algorithm in clinical classification was assessed against artificial neural network and decision tree algorithm by using breast cancer, diabetes and heart disease data in UCI Machine Learning Repository. The test with the same data sets shows that the proposed system can successfully select the significant clinical test set for each disease.

Proposal of a Convolutional Neural Network Model for the Classification of Cardiomegaly in Chest X-ray Images (흉부 X-선 영상에서 심장비대증 분류를 위한 합성곱 신경망 모델 제안)

  • Kim, Min-Jeong;Kim, Jung-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.613-620
    • /
    • 2021
  • The purpose of this study is to propose a convolutional neural network model that can classify normal and abnormal(cardiomegaly) in chest X-ray images. The training data and test data used in this paper were used by acquiring chest X-ray images of patients diagnosed with normal and abnormal(cardiomegaly). Using the proposed deep learning model, we classified normal and abnormal(cardiomegaly) images and verified the classification performance. When using the proposed model, the classification accuracy of normal and abnormal(cardiomegaly) was 99.88%. Validation of classification performance using normal images as test data showed 95%, 100%, 90%, and 96% in accuracy, precision, recall, and F1 score. Validation of classification performance using abnormal(cardiomegaly) images as test data showed 95%, 92%, 100%, and 96% in accuracy, precision, recall, and F1 score. Our classification results show that the proposed convolutional neural network model shows very good performance in feature extraction and classification of chest X-ray images. The convolutional neural network model proposed in this paper is expected to show useful results for disease classification of chest X-ray images, and further study of CNN models are needed focusing on the features of medical images.

Object-oriented Information Extraction and Application in High-resolution Remote Sensing Image

  • WEI Wenxia;Ma Ainai;Chen Xunwan
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.125-127
    • /
    • 2004
  • High-resolution satellite images offer abundance information of the earth surface for remote sensing applications. The information includes geometry, texture and attribute characteristic. The pixel-based image classification can't satisfy high-resolution satellite image's classification precision and produce large data redundancy. Object-oriented information extraction not only depends on spectrum character, but also use geometry and structure information. It can provide an accessible and truly revolutionary approach. Using Beijing Spot 5 high-resolution image and object-oriented classification with the eCognition software, we accomplish the cultures' precise classification. The test areas have five culture types including water, vegetation, road, building and bare lands. We use nearest neighbor classification and appraise the overall classification accuracy. The average of five species reaches 0.90. All of maximum is 1. The standard deviation is less than 0.11. The overall accuracy can reach $95.47\%.$ This method offers a new technology for high-resolution satellite images' available applications in remote sensing culture classification.

  • PDF

An Efficient Fingerprint Classification using Gabor Filter (Gabor 필터를 이용한 효율적인 지문분류)

  • Shim, Hyun-Bo;Park, Young-Bae
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.29-34
    • /
    • 2002
  • Fingerprint recognition technology was studied by classification and matching. In general, there are five different classifications left loop, right loop, whore, arch, and tented-arch. These classifications are used to determine which class an individual's fingerprint belong to, thereby identifying the individual's fingerprint pattern. The result of this classification, which is sent to the large fingerprint database as an index, helps reduce the matching time and enhance the accuracy of fingerprint matching. The existing fingerprint classification method relies on the number and location of cores and delta points called singular points. The drawback of this method is the lack of accuracy stemming from the classification difficulty involving unclear and/or partially-erased fingerprints. The current paper presents an efficient classification method to rectify the problem associated with identifying Singular points from unclear fingerprints. This method, which is based on Gabor filter's unique characteristics for magnifying directional patterns and frequency range selections, improves fingerprint classification accuracy significantly. In this paper, this method is described and its test result is presented for verification.

A Study on Classification Evaluation Prediction Model by Cluster for Accuracy Measurement of Unsupervised Learning Data (비지도학습 데이터의 정확성 측정을 위한 클러스터별 분류 평가 예측 모델에 대한 연구)

  • Jung, Se Hoon;Kim, Jong Chan;Kim, Cheeyong;You, Kang Soo;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.7
    • /
    • pp.779-786
    • /
    • 2018
  • In this paper, we are applied a nerve network to allow for the reflection of data learning methods in their overall forms by using cluster data rather than data learning by the stages and then selected a nerve network model and analyzed its variables through learning by the cluster. The CkLR algorithm was proposed to analyze the reaction variables of clustering outcomes through an approach to the initialization of K-means clustering and build a model to assess the prediction rate of clustering and the accuracy rate of prediction in case of new data inputs. The performance evaluation results show that the accuracy rate of test data by the class was over 92%, which was the mean accuracy rate of the entire test data, thus confirming the advantages of a specialized structure found in the proposed learning nerve network by the class.

Development of a transfer learning based detection system for burr image of injection molded products (전이학습 기반 사출 성형품 burr 이미지 검출 시스템 개발)

  • Yang, Dong-Cheol;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2021
  • An artificial neural network model based on a deep learning algorithm is known to be more accurate than humans in image classification, but there is still a limit in the sense that there needs to be a lot of training data that can be called big data. Therefore, various techniques are being studied to build an artificial neural network model with high precision, even with small data. The transfer learning technique is assessed as an excellent alternative. As a result, the purpose of this study is to develop an artificial neural network system that can classify burr images of light guide plate products with 99% accuracy using transfer learning technique. Specifically, for the light guide plate product, 150 images of the normal product and the burr were taken at various angles, heights, positions, etc., respectively. Then, after the preprocessing of images such as thresholding and image augmentation, for a total of 3,300 images were generated. 2,970 images were separated for training, while the remaining 330 images were separated for model accuracy testing. For the transfer learning, a base model was developed using the NASNet-Large model that pre-trained 14 million ImageNet data. According to the final model accuracy test, the 99% accuracy in the image classification for training and test images was confirmed. Consequently, based on the results of this study, it is expected to help develop an integrated AI production management system by training not only the burr but also various defective images.

Comparison of Classification Models for Sequential Flight Test Results (단계별 비행훈련 성패 예측 모형의 성능 비교 연구)

  • Sohn, So-Young;Cho, Yong-Kwan;Choi, Sung-Ok;Kim, Young-Joun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • The main purpose of this paper is to present selection criteria for ROK Airforce pilot training candidates in order to save costs involved in sequential pilot training. We use classification models such Decision Tree, Logistic Regression and Neural Network based on aptitude test results of 288 ROK Air Force applicants in 1994-1996. Different models are compared in terms of classification accuracy, ROC and Lift-value. Neural network is evaluated as the best model for each sequential flight test result while Logistic regression model outperforms the rest of them for discriminating the last flight test result. Therefore we suggest a pilot selection criterion based on this logistic regression. Overall. we find that the factors such as Attention Sharing, Speed Tracking, Machine Comprehension and Instrument Reading Ability having significant effects on the flight results. We expect that the use of our criteria can increase the effectiveness of flight resources.

Application of Receiver Operating Characteristic (ROC) Curve for Evaluation of Diagnostic Test Performance (진단검사의 특성 평가를 위한 Receiver Operating Characteristic (ROC) 곡선의 활용)

  • Pak, Son-Il;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.33 no.2
    • /
    • pp.97-101
    • /
    • 2016
  • In the field of clinical medicine, diagnostic accuracy studies refer to the degree of agreement between the index test and the reference standard for the discriminatory ability to identify a target disorder of interest in a patient. The receiver operating characteristic (ROC) curve offers a graphical display the trade-off between sensitivity and specificity at each cutoff for a diagnostic test and is useful in assigning the best cutoff for clinical use. In this end, the ROC curve analysis is a useful tool for estimating and comparing the accuracy of competing diagnostic tests. This paper reviews briefly the measures of diagnostic accuracy such as sensitivity, specificity, and area under the ROC curve (AUC) that is a summary measure for diagnostic accuracy across the spectrum of test results. In addition, the methods of creating an ROC curve in single diagnostic test with five-category discrete scale for disease classification from healthy individuals, meaningful interpretation of the AUC, and the applications of ROC methodology in clinical medicine to determine the optimal cutoff values have been discussed using a hypothetical example as an illustration.

Deep Learning-based Pes Planus Classification Model Using Transfer Learning

  • Kim, Yeonho;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.21-28
    • /
    • 2021
  • This study proposes a deep learning-based flat foot classification methodology using transfer learning. We used a transfer learning with VGG16 pre-trained model and a data augmentation technique to generate a model with high predictive accuracy from a total of 176 image data consisting of 88 flat feet and 88 normal feet. To evaluate the performance of the proposed model, we performed an experiment comparing the prediction accuracy of the basic CNN-based model and the prediction model derived through the proposed methodology. In the case of the basic CNN model, the training accuracy was 77.27%, the validation accuracy was 61.36%, and the test accuracy was 59.09%. Meanwhile, in the case of our proposed model, the training accuracy was 94.32%, the validation accuracy was 86.36%, and the test accuracy was 84.09%, indicating that the accuracy of our model was significantly higher than that of the basic CNN model.

Machine learning-based nutrient classification recommendation algorithm and nutrient suitability assessment questionnaire

  • JaHyung, Koo;LanMi, Hwang;HooHyun, Kim;TaeHee, Kim;JinHyang, Kim;HeeSeok, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.16-30
    • /
    • 2023
  • The elderly population is increasing owing to a low fertility rate and an aging population. In addition, life expectancy is increasing, and the advancement of medicine has increased the importance of health to most people. Therefore, government and companies are developing and supporting smart healthcare, which is a health-related product or industry, and providing related services. Moreover, with the development of the Internet, many people are managing their health through online searches. The most convenient way to achieve such management is by consuming nutritional supplements or seasonal foods to prevent a nutrient deficiency. However, before implementing such methods, knowing the nutrient status of the individual is difficult, and even if a test method is developed, the cost of the test will be a burden. To solve this problem, we developed a questionnaire related to nutrient classification twice, based upon which an adaptive algorithm was designed. This algorithm was designed as a machine learning based algorithm for nutrient classification and its accuracy was much better than the other machine learning algorithm.