• Title/Summary/Keyword: Classification Accuracy Test

Search Result 396, Processing Time 0.026 seconds

Rule Discovery for Cancer Classification using Genetic Programming based on Arithmetic Operators (산술 연산자 기반 유전자 프로그래밍을 이용한 암 분류 규칙 발견)

  • 홍진혁;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.999-1009
    • /
    • 2004
  • As a new approach to the diagnosis of cancers, bioinformatics attracts great interest these days. Machine teaming techniques have produced valuable results, but the field of medicine requires not only highly accurate classifiers but also the effective analysis and interpretation of them. Since gene expression data in bioinformatics consist of tens of thousands of features, it is nearly impossible to represent their relations directly. In this paper, we propose a method composed of a feature selection method and genetic programming. Rank-based feature selection is adopted to select useful features and genetic programming based arithmetic operators is used to generate classification rules with features selected. Experimental results on Lymphoma cancer dataset, in which the proposed method obtained 96.6% test accuracy as well as useful classification rules, have shown the validity of the proposed method.

Classification of Man-Made and Natural Object Images in Color Images

  • Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1657-1664
    • /
    • 2004
  • We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.

  • PDF

A Gaussian Mixture Model Based Pattern Classification Algorithm of Forearm Electromyogram (Gaussian Mixture Model 기반 전완 근전도 패턴 분류 알고리즘)

  • Song, Y.R.;Kim, S.J.;Jeong, E.C.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 2011
  • In this paper, we propose the gaussian mixture model based pattern classification algorithm of forearm electromyogram. We define the motion of 1-degree of freedom as holding and unfolding hand considering a daily life for patient with prosthetic hand. For the extraction of precise features from the EMG signals, we use the difference absolute mean value(DAMV) and the mean absolute value(MAV) to consider amplitude characteristic of EMG signals. We also propose the D_DAMV and D_MAV in order to classify the amplitude characteristic of EMG signals more precisely. In this paper, we implemented a test targeting four adult male and identified the accuracy of EMG pattern classification of two motions which are holding and unfolding hand.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Study on non-destructive sorting technique for lettuce(Lactuca sativa L) seed using fourier transform near-Infrared spectrometer (FT-NIR을 이용한 상추(Lactuca sativa L) 종자의 비파괴 선별 기술에 관한 연구)

  • Ahn, Chi-Kook;Cho, Byoung-Kwan;Kang, Jum-Soon;Lee, Kang-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.111-116
    • /
    • 2012
  • Nondestructive evaluation of seed viability is one of the highly demanding technologies for seed production industry. Conventional seed sorting technologies, such as tetrazolium and standard germination test are destructive, time consuming, and labor intensive methods. Near infrared spectroscopy technique has shown good potential for nondestructive quality measurements for food and agricultural products. In this study, FT-NIR spectroscopy was used to classify normal and artificially aged lettuce seeds. The spectra with the range of 1100~2500 nm were scanned for lettuce seeds and analyzed using the principal component analysis(PCA) method. To classify viable seeds from nonviable seeds, a calibration modeling set was developed with a partial least square(PLS) method. The calibration model developed from PLS resulted in 98% classification accuracy with the Savitzky-Golay $1^{st}$ derivative preprocessing method. The prediction accuracy for the test data set was 93% with the MSC(Multiplicative Scatter Correction) preprocessing method. The results show that FT-NIR has good potential for discriminating non-viable lettuce seeds from viable ones.

Bender Gestalt Test Image Recognition with Convolutional Neural Network (합성곱 신경망을 이용한 Bender Gestalt Test 영상인식)

  • Chang, Won-Du;Yang, Young-Jun;Choi, Seong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.455-462
    • /
    • 2019
  • This paper proposes a method of utilizing convolutional neural network to classify the images of Bender Gestalt Test (BGT), which is a tool to understand and analyze a person's characteristic. The proposed network is composed of 29 layers including 18 convolutional layers and 2 fully connected layers, where the network is to be trained with augmented images. To verify the proposed method, 10 fold validation was adopted. In results, the proposed method classified the images into 9 classes with the mean f1 score of 97.05%, which is 13.71%p higher than a previous method. The analysis of the results shows the classification accuracy of the proposed method is stable over all the patterns as the worst f1 score among all the patterns was 92.11%.

Pattern Classification of Multi-Spectral Satellite Images based on Fusion of Fuzzy Algorithms (퍼지 알고리즘의 융합에 의한 다중분광 영상의 패턴분류)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.674-682
    • /
    • 2005
  • This paper proposes classification of multi-spectral satellite image based on fusion of fuzzy G-K (Gustafson-Kessel) algorithm and PCM algorithm. The suggested algorithm establishes the initial cluster centers by selecting training data from each category, and then executes the fuzzy G-K algorithm. PCM algorithm perform using classification result of the fuzzy G-K algorithm. The classification categories are allocated to the corresponding category when the results of classification by fuzzy G-K algorithm and PCM algorithm belong to the same category. If the classification result of two algorithms belongs to the different category, the pixels are allocated by Bayesian maximum likelihood algorithm. Bayesian maximum likelihood algorithm uses the data from the interior of the average intracluster distance. The information of the pixels within the average intracluster distance has a positive normal distribution. It improves classification result by giving a positive effect in Bayesian maximum likelihood algorithm. The proposed method is applied to IKONOS and Landsat TM remote sensing satellite image for the test. As a result, the overall accuracy showed a better outcome than individual Fuzzy G-K algorithm and PCM algorithm or the conventional maximum likelihood classification algorithm.

The cutoff criterion and the accuracy of the polygraph test for crime investigation (범죄수사를 위한 거짓말탐지 검사(polygraph test)의 판정기준과 정확성)

  • Yu Hwa Han ;Kwangbai Park
    • Korean Journal of Culture and Social Issue
    • /
    • v.14 no.4
    • /
    • pp.103-117
    • /
    • 2008
  • The polygraph test administered by the Korean Prosecutors Office for crime investigations customarily uses the score of -12 as the cutoff point separating the subjects who lie from those who tell the truth. The criterion used by the KPO is different from the one (-13) suggested by Backster (1963) who invented the particular method for lie detection. Based on the signal detection theory applied to the real polygraph test data obtained from real crime suspects by the KPO, the present study identified the score of -8 as an optimal criterion resulting in the highest overall accuracy of the polygraph test. The classification of the subjects with the score of -8 as the criterion resulted in the highest accuracy (83.17%) compared with the accuracies of classifications with the Backster's criterion (76.24%) and the KPO's criterion (80.20%). However, the new criterion was also found to result in more false-positive cases. Based on the results from the present study, it was recommended to use the score of -8 as the criterion when the overall accuracy is important but the score of -12 or -13 when avoiding false-positive is more important than securing the overall accuracy.

  • PDF

HMM-Based Transient Identification in Dynamic Process

  • Kwon, Kee-Choon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.40-46
    • /
    • 2000
  • In this paper, a transient identification based on a Hidden Markov Model (HMM) has been suggested and evaluated experimentally for the classification of transients in the dynamic process. The transient can be identified by its unique time dependent patterns related to the principal variables. The HMM, a double stochastic process, can be applied to transient identification which is a spatial and temporal classification problem under a statistical pattern recognition framework. The HMM is created for each transient from a set of training data by the maximum-likelihood estimation method. The transient identification is determined by calculating which model has the highest probability for the given test data. Several experimental tests have been performed with normalization methods, clustering algorithms, and a number of states in HMM. Several experimental tests have been performed including superimposing random noise, adding systematic error, and untrained transients. The proposed real-time transient identification system has many advantages, however, there are still a lot of problems that should be solved to apply to a real dynamic process. Further efforts are being made to improve the system performance and robustness to demonstrate reliability and accuracy to the required level.

  • PDF

MOTIF BASED PROTEIN FUNCTION ANALYSIS USING DATA MINING

  • Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.812-815
    • /
    • 2006
  • Proteins are essential agents for controlling, effecting and modulating cellular functions, and proteins with similar sequences have diverged from a common ancestral gene, and have similar structures and functions. Function prediction of unknown proteins remains one of the most challenging problems in bioinformatics. Recently, various computational approaches have been developed for identification of short sequences that are conserved within a family of closely related protein sequence. Protein function is often correlated with highly conserved motifs. Motif is the smallest unit of protein structure and function, and intends to make core part among protein structural and functional components. Therefore, prediction methods using data mining or machine learning have been developed. In this paper, we describe an approach for protein function prediction of motif-based models using data mining. Our work consists of three phrases. We make training and test data set and construct classifier using a training set. Also, through experiments, we evaluate our classifier with other classifiers in point of the accuracy of resulting classification.

  • PDF