The performance of convolutional deep learning networks is generally determined according to parameters of target dataset, structure of network, convolution kernel, activation function, and optimization algorithm. In this paper, a genetic algorithm is used to select the appropriate deep learning model and parameters for Alzheimer's classification and to compare the learning results with preliminary experiment. We compare and analyze the Alzheimer's disease classification performance of VGG-16, GoogLeNet, and ResNet to select an effective network for detecting AD and MCI. The simulation results show that the network structure is ResNet, the activation function is ReLU, the optimization algorithm is Adam, and the convolution kernel has a 3-dilated convolution filter for the accuracy of dementia medical images.
The Diagnostic and Statistical Manual 4th edition (DSM-IV) has been widely accepted and used for international classification of mental disorder. The DSM has been changed to improve diagnostic reliability and validity through descriptive and categorical approaches which was undertaken atheoretically. The authors reviewed current studies about the DSM-IV classification system and the diagnostic issues of representative categories of anxiety disorder. The authors concluded that the anxiety disorder classification system in DSM-IV has limitations such as a lack of empirical consideration for overlapping features of anxiety disorders and a lack of discriminant validity. To improve diagnostic validity and revise the current DSM-IV classification system, the authors suggested 1) more longitudinal studies for collecting empirical evidence, 2) decreasing the dependence upon operational criteria, 3) deceasing diagnostic boundary blurring, 4) developing disease specific biological diagnostic techniques and 5) continued collaboration between the DSM and International Classification of Diseases (ICD) systems.
The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis have been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, We proposed an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted four morphological features parameters such as centromeric index (C.I.), relative length ratio(R.L.), relative area ratio(R.A.) and chromosome length(C.L.). These Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results shown that the chromosome classification error was reduced much more than that of the other classification methods.
Vein of Galen aneurysmal malformation is one of important pediatric arteriovenous shunt diseases, especially among neonates and infants. Here, early history of the disease identification, basic pathoanatomy with a focus on the embryonic median prosencephalic vein, classification and differential diagnoses, and recent genetic studies are reviewed.
본 논문에서는 질병에 대한 전문적인 지식이 부족한 일반인들을 대상으로 자신의 건강 상태를 쉽게 파악할 수 있는 퍼지 신경망 기법을 이용한 한방 자가 진단 질병 분류 시스템과, 자택에서 간편하게 전문의의 진료상담을 받을 수 있는 원격 진료 시스템을 통합한 홈메디컬 시스템을 제안한다. 제안한 한방 자가 진단 시스템은 72가지 한방 질병과 각 질병에 대한 증상을 분석하여 데이터베이스로 구축하고 구축된 데이터베이스 정보를 기반으로 퍼지 신경망 기법을 적용하여 사용자의 질병을 도출한다. 본 논문의 자가 진단 방법은 사용자가 자신의 대표 증상을 제시하면 해당 증상을 포함하는 질병들을 도출하고, 도출된 질병들의 세부 증상들을 사용자가 입력 벡터로 제시하면 퍼지 신경망 기법을 적용하여 세부 증상에 대한 질병들을 클러스터링한 후, 세부 증상에 대한 질병의 소속 정도를 제공한다. 제안한 원격 진료 시스템은 사용자와 전문의가 모두 로그인을 통하여 접속하게 되면 서버에 클라이언트의 정보가 송신되고, 사용자는 서버에서 전문의의 접속 현황을 전달받아 원하는 전문의와 동화상으로 원격 연결되어 전문의의 진료 소견을 받는다. 본 논문에서 제안한 시스템을 한의학 전문의가 분석한 결과, 본 논문에서 제안한 시스템이 한방 질병의 보조 진단으로서의 가능성을 확인하였다.
초점성 분절성 사구체 경화증(focal segmental glomerulosclerosis; FSGS)은 경화증을 주 병변으로 하는 질환으로서 일차성 사구체 질환의 하나이면서 진행된 사구체 질환의 형태적 변화를 기술하는 단어로도 사용되고 있다. 사구체에는 경화증, 유리질 형성, 거품세포의 출현, 발세포의 공포화, 광륜형성 등이 보이고, 간질의 섬유화와 염증세포의 침윤, 세뇨관의 위축, 혈관의 비후 및 내막 섬유화 등을 특징으로 한다. 면역형광검사에서 부분적으로 IgM과 C3 등의 침착을 보이지만 면역관련 질환은 아니다. 전자현미경 검사에서는 발세포의 손상 현상으로 세포질 내의 공포화와 족돌기가 상실되는 것이 중요 소견이다. 2004년 표준화 된 FSGS의 분류는 과거의 형태학적 변형들을 모아서 임상과의 상관관계를 지웠다. 그 결과 tip형이 가장 예후가 좋으며, collapsing형이 가장 나쁜 것으로 알려졌다. 그러나 이 분류가 증례에 따라서는 적용하기가 애매한 경우가 많고, collapsing형을 FSGS에 분류하는 것에 대한 반론 등이 제기되고 있다. 한편, 임상적으로는 FSGS를 원인에 따라 분류하여 거꾸로 형태학적 공통점을 찾으려는 노력을 하고 있다. 사구체의 수가 적어서 일어나는 과여과로 인한 FSGS는 perihilar형이 많고 유전적 질환에 의한 것은 diffuse mesangial sclerosis가 특징인 것으로 주장되고 있다. FSGS는 이와 같이 아직도 밝혀져야 할 것이 많은 질환이며, 계속적인 연구가 이루어져야 할 필요가 있다.
Purpose: With previous methods based on only age and location, there are many difficulties in identifying the etiology of acute abdominal pain in children. We sought to develop a new systematic classification of acute abdominal pain and to give some helps to physicians encountering difficulties in diagnoses. Methods: From March 2005 to May 2010, clinical data were collected retrospectively from 442 children hospitalized due to acute abdominal pain with no apparent underlying disease. According to the final diagnoses, diseases that caused acute abdominal pain were classified into nine groups. Results: The nine groups were group I "catastrophic surgical abdomen" (7 patients, 1.6%), group II "acute appendicitis and mesenteric lymphadenitis" (56 patients, 12.7%), group III "intestinal obstruction" (57 patients, 12.9%), group IV "viral and bacterial acute gastroenteritis" (90 patients, 20.4%), group V "peptic ulcer and gastroduodenitis" (66 patients, 14.9%), group VI "hepatobiliary and pancreatic disease" (14 patients, 3.2%), group VII "febrile viral illness and extraintestinal infection" (69 patients, 15.6%), group VIII "functional gastrointestinal disorder (acute manifestation)" (20 patients, 4.5%), and group IX "unclassified acute abdominal pain" (63 patients, 14.3%). Four patients were enrolled in two disease groups each. Conclusion: Patients were distributed unevenly across the nine groups of acute abdominal pain. In particular, the "unclassified abdominal pain" only group was not uncommon. Considering a systemic classification for acute abdominal pain may be helpful in the diagnostic approach in children.
Hepatitis is a major public health problem all around the world. This paper proposes an automatic disease diagnosis system for hepatitis based on Genetic Algorithm (GA) Wavelet Kernel (WK) Extreme Learning Machines (ELM). The classifier used in this paper is single layer neural network (SLNN) and it is trained by ELM learning method. The hepatitis disease datasets are obtained from UCI machine learning database. In Wavelet Kernel Extreme Learning Machine (WK-ELM) structure, there are three adjustable parameters of wavelet kernel. These parameters and the numbers of hidden neurons play a major role in the performance of ELM. Therefore, values of these parameters and numbers of hidden neurons should be tuned carefully based on the solved problem. In this study, the optimum values of these parameters and the numbers of hidden neurons of ELM were obtained by using Genetic Algorithm (GA). The performance of proposed GA-WK-ELM method is evaluated using statical methods such as classification accuracy, sensitivity and specivity analysis and ROC curves. The results of the proposed GA-WK-ELM method are compared with the results of the previous hepatitis disease studies using same database as well as different database. When previous studies are investigated, it is clearly seen that the high classification accuracies have been obtained in case of reducing the feature vector to low dimension. However, proposed GA-WK-ELM method gives satisfactory results without reducing the feature vector. The calculated highest classification accuracy of proposed GA-WK-ELM method is found as 96.642 %.
International Journal of Computer Science & Network Security
/
제23권5호
/
pp.148-162
/
2023
Classification systems can significantly assist the medical sector by allowing for the precise and quick diagnosis of diseases. As a result, both doctors and patients will save time. A possible way for identifying risk variables is to use machine learning algorithms. Non-surgical technologies, such as machine learning, are trustworthy and effective in categorizing healthy and heart-disease patients, and they save time and effort. The goal of this study is to create a medical intelligent decision support system based on machine learning for the diagnosis of heart disease. We have used a mixed feature creation (MFC) technique to generate new features from the UCI Cleveland Cardiology dataset. We select the most suitable features by using Least Absolute Shrinkage and Selection Operator (LASSO), Recursive Feature Elimination with Random Forest feature selection (RFE-RF) and the best features of both LASSO RFE-RF (BLR) techniques. Cross-validated and grid-search methods are used to optimize the parameters of the estimator used in applying these algorithms. and classifier performance assessment metrics including classification accuracy, specificity, sensitivity, precision, and F1-Score, of each classification model, along with execution time and RMSE the results are presented independently for comparison. Our proposed work finds the best potential outcome across all available prediction models and improves the system's performance, allowing physicians to diagnose heart patients more accurately.
Objectives : The purpose of this study is to find the principal of the assignment of Sidong disease and Sosaeng disease(是動病 所生病) into 12 meridians and suggest the author's opinion. Methods : 1. The authors investigated the conception of Sidong disease and Sosaeng disease through several literatures. 2. The authors investigated the line course of 12 meridians(經脈流注) and their Sidong disease and Sosaeng disease. 3. The authors classified Sidong disease and Sosaeng disease following the study by Kim et al. 4. The authors suggested the opinions about the diseases that are difficult to be understood direct relation with the course of meridian. Results : 1. The result of classification of Sidong disease and Sosaeng disease into 5 shows that the percentages were 32.96% for meridian's own disease(本經病), 13.97% for organic own disease(本臟腑病), 12.85% for other organic own disease(他臟腑病), 20.67% for related organic disease(有關器官病), 19.55% for etc.(其他病). 2. Therefore, 19.55% of the whole Sidong disease and Sosaeng disease is that which occurred on the site that is not related directly with the meridian. Conclusions : 1. The exterior and interior relation(表裏關係) and mutual communication between organ and bowel(臟腑相通) are associated with the basic principal of the assignment of Sidong disease and Sosaeng disease that is not related with the course of meridian. 2. The cause of assignment of Sidong disease and Sosaeng disease can be explained according to the profound medical theories.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.