• Title/Summary/Keyword: Classifiation

Search Result 3, Processing Time 0.019 seconds

Algorithm for Classifiation of Alzheimer's Dementia based on MRI Image (MRI 이미지 기반의 알츠하이머 치매분류 알고리즘)

  • Lee, Jae-kyung;Seo, Jin-beom;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.97-99
    • /
    • 2021
  • As the aging society continues in recent years, interest in dementia is increasing. Among them, Alzheimer's disease is a degenerative brain disease that accounts for the largest percentage of all dementia patients, with the medical community currently not offering clear prevention and treatment for Alzheimer's disease, and the importance of early treatment and early prevention is emphasized. In this paper, we intend to find the most efficient activation function by combining various activation functions centering on convolutional neural networks using MRI datasets of normal people and patients with Alzheimer's disease. In addition, it is intended to be used as a dementia classification modeling suitable for the medical field in the future through Alzheimer's dementia classification modeling.

  • PDF

Comparative Analysis of CNN Techniques designed for Rotated Object Classifiation (회전된 객체 분류를 위한 CNN 기법들의 성능 비교 분석)

  • Hee-Il Hahn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.181-187
    • /
    • 2024
  • There are two kinds of well-known CNN methods, the group equivariant CNN and the CNN using steerable filters, which have excellent classification performances for randomly rotated objects in image space. This paper describes their mathematical structures and introduces implementation methods. We implement them, including the existing CNN, which have the same number of filters, then compare and analyze their performances by simulating them with the randomly rotated MNIST. According to the experimental results, the steerable CNN, which shows a classification improvement over the others, has a relatively small number of parameters to learn, so performance degradation is relatively small even when the size of the training dataset is reduced.

Wildfire Detection Method based on an Artificial Intelligence using Image and Text Information (이미지와 텍스트 정보를 활용한 인공지능 기반 산불 탐지 방법)

  • Jae-Hyun Jun;Chang-Seob Yun;Yun-Ha Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.19-24
    • /
    • 2024
  • Global climate change is causing an increase in natural disasters around the world due to long-term temperature increases and changes in rainfall. Among them, forest fires are becoming increasingly large. South Korea experienced an average of 537 forest fires over a 10-year period (2013-2022), burning 3,560 hectares of forest. That's 1,180 soccer fields(approximately 3 hectares) of forest burning every year. This paper proposed an artificial intelligence based wildfire detection method using image and text information. The performance of the proposed method was compared with YOLOv9-C, RT-DETR-Res50, RT-DETR-L, and YOLO-World-S methods for mAP50, mAP75, and FPS, and it was confirmed that the proposed method has higher performance than other methods. The proposed method was demonstrated as a forest fire detection model of the early forest fire detection system in the Gangwon State, and it is planned to be advanced in the direction of fire detection that can include not only forest areas but also urban areas in the future.