• Title/Summary/Keyword: Class-E Power Amplifier

Search Result 62, Processing Time 0.029 seconds

MEMS TUNING ELEMENTS FOR MICRO/MILLIMETER-WAVE POWER AMPLIFIERS (마이크로/밀리미터파 대역에서 전력증폭기의 효율향상을 위한 MEMS 튜닝회로)

  • Kim, Jae-Heung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.118-121
    • /
    • 2003
  • A new approach, using MEMS, for improving the performance of high efficiency amplifiers is proposed in this paper. The MEMS tuning element is described as a variable-length shorted CPW stub. Class-E amplifiers can be optimally tuned by these MEMS tuning elements because their operation varies with the impedance of the output tuning circuit. A MEMS tuning element was simulated using full-wave EM simulators to obtain its S-parameters. A Class-E amplifier with the MEMS was designed at 8GHz. The non-linear operation of this amplifier was simulated to explore the effect of the MEMS tuning. Comparing the initially designed amplifier without MEMS, the Power Added Efficiency (PAE) of the amplifier with MEMS is improved from 46.3% to 66.9%. For the amplifier with MEMS, the nonlinear simulation results are PAE = 66.90%, $\eta$(drain efficiency) = 75.89%, and $P_{out}$ = 23.37 dBm at 8 GHz. In this paper, the concept of the MEMS tuning element is successfully applied to the Class E amplifier designed with transmission lines.

  • PDF

Efficiency Improvement of HBT Class E Power Amplifier by Tuning-out Input Capacitance

  • Kim, Ki-Young;Kim, Ji-Hoon;Park, Chul-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.274-280
    • /
    • 2007
  • This paper demonstrates an efficiency improvement of the class E power amplifier (PA) by tuning-out the input capacitance ($C_{IN}$) of the power HBT with a shunt inductance. In order to obtain high output power, the PA needs the large emitter size of a transistor. The larger the emitter size, the higher the parasitic capacitance. The parasitic $C_{IN}$ affects the distortion of the voltage signal at the base node and changes the duty cycle to decrease the PA's efficiency. Adopting the L-C resonance, we obtain a remarkable efficiency improvement of as much as 7%. This PA exhibits output power of 29 dBm and collector efficiency of 71% at 1.9 GHz.

Frequency Adaptive High Efficiency Class-E Amplifier in 400 MHz Range (400MHz 대역의 주파수 적응형 고효율 Class-E 증폭기)

  • Ryu, Jae-Hyun;Son, Kang-Ho;Kim, Young;Yoon, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.673-675
    • /
    • 2010
  • This paper proposes the adaptive class-E power amplifier with maintaining high power added efficiency (PAE) in 400MHz range. This amplifier is used a microprocessor to adapt a resonator circuits and to maintain high efficiency in case of input frequency variation. To validate the adaptive amplifier operation, which is a 450MHz operating frequency and a 100MHz bandwidth, the class E amplifier is implemented. As a result, the adaptive amplifier is maintained above 60% efficiency and has a 74.8% maximum efficiency.

  • PDF

Design of a High Efficiency Class E Amplifier for Wireless LAN (무선 LAN용 고효율 E급 증폭기 설계)

  • Park Chan-Hyuck;Koo Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.91-96
    • /
    • 2006
  • High efficiency switching mode circuits such as class I amplifiers have been well known in the MHz frequency range. The class E amplifier is a type of switching mode amplifier offering very high efficiency approaching 100%. In this paper, the class E amplifier has been designed by using the harmonic balance method of circuit simulator. The designed amplifier is realized by using pHEMT and microstrip line, shows 66% power added efficiency (PAE) at 2.4GHz with 17.6dBm output power. With -3dBm input power of wireless LAN, measured output spec01m can meet the required IEEE 802.11g standard spectrum mask. That means the required amplifier back off of 9dB from $P_{ldB}$ to satisfy the required wireless LAN spectrum mask.

Linearity Improvement of Class E Amplifier Using Digital Predistortion (디지털 사전왜곡을 이용한 마이크로파 E급 증폭기의 선형성 개선)

  • Park, Chan-Hyuck;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.92-97
    • /
    • 2007
  • Switching mode amplifiers have been studied widely for use at microwave frequency range, and the class E amplifier which is a type of switching mode amplifier offers very high efficiency approaching 100%. In this paper, 2.4GHz microwave class E amplifier with 66% power added efficiency (PAE) and 17.6dBm output has been linearized for use at wireless LAN transmitter, and digital predistortion technique with look up table is applied. With -3dBm input power of wireless LAN, measured output spectrum can meet the required IEEE 802.11g standard spectrum mask, and the digital predistortion output spectrum has been improved by 5dB of ACPR at 20MHz offset from center frequency.

Design of High Efficiency Switching-Mode Doherty Power Amplifier Using GaN HEMT (GaN HEMT를 이용한 고효율 스위칭 모드 도허티 전력증폭기 설계)

  • Choi, Gil-Wong;Kim, Hyoung-Jong;Choi, Jin-Joo;Kim, Seon-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.72-79
    • /
    • 2010
  • In this paper, we describe the design and implementation of a high efficiency Doherty power amplifier using gallium nitride (GaN) high-electron mobility transistor (HEMT). The carrier and peaking amplifiers of the proposed Doherty power amplifier consist of the switching-mode Class-E power amplifiers. The test conditions are a duty of 10% and a pulse width of $100\;{\mu}s$ and pulse repetition frequency (PRF) of 1 kHz for a S-band radar application. A RF performance peak PAE of 64% with drain efficiency of 80.6%, at 6 dB output back-off point from saturated output power of 45.5 dBm, was obtained at 2.85 GHz.

Design of 20 W Class-E Amplifier Including Protection for Wireless Power Transmission at ISM 13.56 MHz (보호 회로를 포함한 무선 전력 전송용 ISM 13.56 MHz 20 W Class-E 앰프 설계)

  • Nam, Min-Young;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.613-622
    • /
    • 2013
  • In this paper, an inductive clamping class-E power amplifier has been tested for wireless power transmission at ISM band, 13.56 MHz. The implemented power amplifier is designed to operate stably without destroying power transistor in wireless power transmission system which basically keeps not to align between a transmitting antenna and a receiving antenna. The power amplifier is also designed to enhance harmonic filtering characteristic. The amplifier was tested with a DC supply voltage of 28 V and input power of 25 dBm at 13.56 MHz. The test results show the output power level of 43 dBm, the difference power level between fundamental frequency and second harmonic frequency of more than 55 dBc, the dc current consumption of 830 mA, and the high power-added efficiency of 85 %. Finally, the implemented power amplifier operated normally with 830 mA DC current consumption from 28 V source when the two antennas were aligned, and the power transmission was successful. But when the two antennas were not aligned, its DC current consumption automatically decreased down to 420 mA to protect the switching transistor.

High Stability and High Efficiency Power Amplifier with Switchable Damper for Plasma Applications (플라즈마 응용을 위한 선택적 감쇠기를 사용한 고안정 고효율 전력증폭기)

  • Kim, Ji-Yeon;Lee, Dong-Heon;Chun, Sang-Hyun;Yoo, Ho-Joon;Kim, Jong-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • In this paper, a new 1 kW power amplifier with high efficiency and high stability in a RF generator is designed and fabricated for plasma applications. The efficiency of power amplifier is improved by using class-E amplifier that consists of one push-pull MOSFET and high current drive IC instead of class-C amplifier composed of several single ended MOSFET. Switchable damper that allows selecting three different modes of amplifiers for considering efficiency and stability is added into the amplifier for plasma applications. Stable region of an early electronic discharge section is extended to VSWR of 4.5:1 compared to conventional VSWR of 3.8:1 through using switchable damper. The dimension of the amplifier is also reduced to 30 % of conventional amplifier. The 80 % efficiency of power amplifier with switchable damper is obtained the output power of 1 kW in operating frequency of 13.56 MHz. In comparison of conventional power amplifier for plasma applications, 13 % efficiency is improved.

Linearity and Efficiency Improved outphasing Class-E Power Amplifier Using Composite Right/Left-Handed Transmission Lines Combiner (Composite Right/Left-Handed Transmission Lines 결합기를 이용하여 선형성과 효율을 향상한 outphasing E급 전력 증폭기)

  • Eun, Sang-Ki;Cho, Choon-Sik;Lee, Jae-W.;Kim, Jae-Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1313-1321
    • /
    • 2008
  • outphasing class-E power amplifier using composite right/left-handed transmission lines(CRLH-TL) is proposed at 2.4 GHz. The power combiner including CRLH-TL is designed to suppress the second and third harmonics to increase linearity and the output problem of the conventional outphasing amplifier is also solved by the proposed outphasing amplifier. So the P AE is improved. The measured maximum output power at the fundamental frequency shows 31.8 dBm, whereas the PAE shows 50 % with 14 dBm input power excited. The IMD3 is improved by 5 dB compared to that of conventional outphasing amplifier.

Class-E CMOS PAs for GSM Applications

  • Lee, Hong-Tak;Lee, Yu-Mi;Park, Chang-Kun;Hong, Song-Cheol
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • Various Class-E CMOS power amplifiers for GSM applications are presented. A stage-convertible transformer for a dual mode power amplifier is proposed to increase efficiency in the low-output power region. An integrated passive device(IPD) process is used to reduce combiner losses. A split secondary 1:2 transformer with IPD process is designed to obtain efficient and symmetric power combining. A quasi-four-pair structure of CMOS PA is also proposed to overcome the complexities of power combining.