• Title/Summary/Keyword: Class III epitope

Search Result 2, Processing Time 0.018 seconds

Characterization of a Novel Monoclonal Antibody (27H2) Recognizing Human CD34 Class III Epitope

  • Hong, Kwon-Pyo;Kang, Sung-Hee;Lee, Kyoung-Mee;Ji, Gil-Yong;Yoon, Sang-Soon;Kim, Jong-Suk;Son, Bo-Ra;Lee, Dong-Geun;Lee, Ok-Jun;Song, Hyung-Geun
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.239-246
    • /
    • 2010
  • Background: Monoclonal antibodies (mAbs) recognizing Class III epitope of CD34 are essential for flow cytometric diagnosis of leukemia. Methods: 27H2 mAb was developed from a mouse alternatively immunized with human acute leukemia cell lines, KG1 and Molm-1. Using flow cytometric analysis of various leukemic cell lines and peripheral blood, immunohistochemical study of frozen tonsil, we characterized 27H2 mAb. Antigen immunoprecipitated with 27H2 mAb immunobloted with anti-CD34 mAb. A case of bone marrow sample of acute lymphoblastic leukemia (ALL) patient was obtained at CBNU Hospital. For epitope identification enzyme treatment with neuraminidase and O-sialoglycoprotein endopeptidase (OSGE) and blocking assay with known classIII mAb (HPCA-2) were done. Results: Only KG1 and Molm-1 revealed positive immunoreactivity. Immunohistochemical staining disclosed strong membranous immunoreactivity on high endothelial venules. Antigen immunoprecipitated by 27H2 mAb showed approximately 100 kDa sized band immunoblotted with anti-CD34 under non-reducing conditions. Epitope recognized by 27H2 mAb disclosed resistancy to both neuraminidase and OSGE treatment and completely blocked with known class III mAb preincubation. CD34 positive leukemic cells in BM of pre B cell ALL patient detected by FITC-conjugated 27H2 and HPCA-2 were identified with similar sensitivity. Conclusion: A novel murine mAb recognizing class III epitope of human CD34 with high affinity, which is useful for flow cytometric diagnosis of leukemia, was developed.

In silico Design of Discontinuous Peptides Representative of B and T-cell Epitopes from HER2-ECD as Potential Novel Cancer Peptide Vaccines

  • Manijeh, Mahdavi;Mehrnaz, Keyhanfar;Violaine, Moreau;Hassan, Mohabatkar;Abbas, Jafarian;Mohammad, Rabbani
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5973-5981
    • /
    • 2013
  • At present, the most common cause of cancer-related death in women is breast cancer. In a large proportion of breast cancers, there is the overexpression of human epidermal growth factor receptor 2 (HER2). This receptor is a 185 KDa growth factor glycoprotein, also known as the first tumor-associated antigen for different types of breast cancers. Moreover, HER2 is an appropriate cell-surface specific antigen for passive immunotherapy, which relies on the repeated application of monoclonal antibodies that are transferred to the patient. However, vaccination is preferable because it would stimulate a patient's own immune system to actively respond to a disease. In the current study, several bioinformatics tools were used for designing synthetic peptide vaccines. PEPOP was used to predict peptides from HER2 ECD subdomain III in the form of discontinuous-continuous B-cell epitopes. Then, T-cell epitope prediction web servers MHCPred, SYFPEITHI, HLA peptide motif search, Propred, and SVMHC were used to identify class-I and II MHC peptides. In this way, PEPOP selected 12 discontinuous peptides from the 3D structure of the HER2 ECD subdomain III. Furthermore, T-cell epitope prediction analyses identified four peptides containing the segments 77 (384-391) and 99 (495-503) for both B and T-cell epitopes. This work is the only study to our knowledge focusing on design of in silico potential novel cancer peptide vaccines of the HER2 ECD subdomain III that contain epitopes for both B and T-cells. These findings based on bioinformatics analyses may be used in vaccine design and cancer therapy; saving time and minimizing the number of tests needed to select the best possible epitopes.