• Title/Summary/Keyword: Clamping Load

Search Result 82, Processing Time 0.016 seconds

A Study on Structural Simulation for Development of High Strength and Lightweight 48V MHEV Battery Housing (고강도 경량 48V MHEV 배터리 하우징 개발을 위한 구조시뮬레이션에 관한 연구)

  • Yong-Dae Kim;Jeong-Won Lee;Eui-Chul Jeong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2023
  • In this study, on the structure simulation for manufacturing a high strength/light weight 48V battery housing for a mild hybrid vehicle was conducted. Compression analysis was performed in accordance with the international safety standards(ECE R100) for existing battery housings. The effect of plastic materials on compressive strength was analyzed. Three models of truss, honeycomb and grid rib for the battery housing were designed and the strength characteristics of the proposed models were analyzed through nonlinear buckling analysis. The effects of the previous existing rib, double-sided grid rib, double-sided honeycomb rib and double-sided grid rib with a subtractive draft for the upper cover on the compressive strength in each axial direction were examined. It was confirmed that the truss rib reinforcement of the battery housing was very effective compared to the existing model and it was also confirmed that the rib of the upper cover had no significant effect. In the results of individual 3-axis compression analysis, the compression load in the lateral long axis direction was the least and this result was found to be very important to achieve the overall goal in designing the battery housing. To reduce the weight of the presented battery housing model, the cell molding method was applied. It was confirmed that it was very effective in reducing injection pressure, clamping force and weight.

  • PDF

The behavior of strength on friction welding of dissimilar steels by various heating time : in case of SM45C and SUS304 materials (이종강의 마찰압접시 압접시간 변화에 따른 강도거동-SM45C와 SUS304재의 경우)

  • 박명과;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.762-771
    • /
    • 1987
  • Friction welding is a fusion process in which the necessary heat is generated by clamping one of the two pieces to be welded in a stationary chuck and rotating the other at high speed with an axially applied load. It is essentially a variation of the pressure welding process but utilizes a novel heating method. In addition to the foregoing advantages, it has also been reported excellent for welding dissimilar materials. Therefore, this study reported on investigating the strength behavior for the frictionally welded domestic structural steel SM45C and SUS304. The results obtained by the experiments are as follows. (1) The highest tensile strength of the best friction welded specimen (B4) is about 3% lower than that of SM-45C base metal, and 9% lower than that of SUS304 base metal. The heat treated specimens (850.deg.C 1hr A.C) have almost same value of tensile strength. (2) The strain of SM45C base metal is 27.3% and that of SUS304 is 42%, that of the best friction welded specimen (B4) appeared as 11.9% which is about 50% lower than the base metal, so, this same phenomenon apeared in all the other welding conditions. (3) The bending strength of SM45C base metal is 123kgf/mm$^{2}$ and that of SUS304 is 127kgf/mm$^{2}$. The best specimen (B4) appeared as 121kgf/mm$^{2}$ which is almost same bending strength for both base metals. (4) The friction welded condition involving maximum strength is determined by P$_{1}$=8kgf/mm$_{2}$, P$_{2}$=22kgf/mm$_{2}$, T$_{1}$=10sec, T$_{2}$=2sec, and amount of upset 7.6mm. (5) The interface of two dissimilar materials are mixed strongly, and welded zone is about 1.03mm and also the heat affected zone is about 2.36mm at SM45C while about 1.85mm at SUS304, therefore the welded zone and heat affected zone are very narrow to compare with those of the other welding materials.