• Title/Summary/Keyword: Cladding parameters

Search Result 96, Processing Time 0.068 seconds

Molybdenum isotopes separation using squared-off optimized cascades

  • Mahdi Aghaie;Valiyollah Ghazanfari
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3291-3300
    • /
    • 2023
  • Recently molybdenum alloys have been introduced as accident tolerating materials for cladding of fuel rods. Molybdenum element has seven stable isotopes with different neutron absorption cross section used in various fields, including nuclear physics and radioisotope production. This study presents separation approaches for all intermediate isotopes of molybdenum element by squared-off cascades using a newly developed numerical code with Salp Swarm Algorithm (SSA) optimization algorithm. The parameters of cascade including feed flow rate, feed entry stage, cascade cut, input feed flow rate to gas centrifuges (GCs), and cut of the first stage are optimized to maximize both isotope recovery and cascade capacity. The squared off and squared cascades are studied, and the efficiencies are compared. The results obtained from the optimization showed that for the selected squared off cascade, Mo94 in four separation steps, Mo95 in five steps, Mo96 in six steps, Mo97 in seven steps, and Mo98 in two steps are separated to the desired concentrations. The highest recovery factor is obtained 63% for Mo94 separation and lowest recovery factor is found 45% for Mo95.

Modelling of the fire impact on CONSTOR RBMK-1500 cask thermal behavior in the open interim storage site

  • Robertas Poskas;Kestutis Rackaitis;Povilas Poskas;Hussam Jouhara
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2604-2612
    • /
    • 2023
  • Spent nuclear fuel and long-lived radioactive waste must be carefully handled before disposing them off to a geological repository. After the pre-storage period in water pools, spent nuclear fuel is stored in casks, which are widely used for interim storage. Interim storage in casks is very important part in the whole cycle of nuclear energy generation. This paper presents the results of the numerical study that was performed to evaluate the thermal behavior of a metal-concrete CONSTOR RBMK-1500 cask loaded with spent nuclear fuel and placed in an open type interim storage facility which is under fire conditions (steady-state, fire, post-fire). The modelling was performed using the ANSYS Fluent code. Also, a local sensitivity analysis of thermal parameters on temperature variation was performed. The analysis demonstrated that the maximum increase in the fuel load temperatures is about 10 ℃ and 8 ℃ for 30 min 800 ℃ and 60 min 600 ℃ fires respectively. Therefore, during the fire and the post-fire periods, the fuel load temperatures did not exceed the 300 ℃ limiting temperature set for an RBMK SNF cladding for long-term storage. This ensures that fire accident does not cause overheating of fuel rods in a cask.

Effect of critical flow model in MARS-KS code on uncertainty quantification of large break Loss of coolant accident (LBLOCA)

  • Lee, Ilsuk;Oh, Deogyeon;Bang, Youngseog;Kim, Yongchan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.755-763
    • /
    • 2020
  • The critical flow phenomenon has been studied because of its significant effect for design basis accidents in nuclear power plants. Transition points from thermal non-equilibrium to equilibrium are different according to the geometric effect on the critical flow. This study evaluates the uncertainty parameters of the critical flow model for analysis of DBA (Design Basis Accident) with the MARS-KS (Multi-dimensional Analysis for Reactor Safety-KINS Standard) code used as an independent regulatory assessment. The uncertainty of the critical flow model is represented by three parameters including the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio, and their ranges are determined using large-scale Marviken test data. The uncertainty range of the thermal non-equilibrium factor is updated by the MCDA (Model Calibration through Data Assimilation) method. The updated uncertainty range is confirmed using an LBLOCA (Large Break Loss of Coolant Accident) experiment in the LOFT (Loss of Fluid Test) facility. The uncertainty ranges are also used to calculate an LBLOCA of the APR (Advanced Power Reactor) 1400 NPP (Nuclear Power Plants), focusing on the effect of the PCT (Peak Cladding Temperature). The results reveal that break flow is strongly dependent on the degree of the thermal non-equilibrium state in a ruptured pipe with a small L/D ratio. Moreover, this study provides the method to handle the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio in the system code.

A study on the fabrication of Y-branch for optical power distribution and its coupling properties with optical fiber (광분배를 위한 Y-branch 제작과 광파이버와의 결합특성에 관한 연구)

  • 김상덕;박수봉;윤중현;이재규;김종빈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3277-3285
    • /
    • 1996
  • In this paper, w designed an opical power distribution device for application to an optical switching and an optical subscriber loop. We fabricated PSG thin film by LPCVD. Based on the measured index of fabricted thin film, rib-type waveguide was transformed to two-dimension by the effective index method and we simulated dispersion property to find asingle-mode condition. We found that the optimum design parameters of rib-type waveguide are:cladding layer of 3.mu.m, core layer of 3.mu.m, buffer layer of 10.mu.m, and core width of 4.mu.m. Each side of the guiding region was etched down to 4.mu.m to shape the core. We used these optimum parameters of the rib-type waveguide with branching angle of 0.5.deg. and simulted the Y-branch waveguide by the BPM simulation. Numerical loss in branching area was claculated to be 0.1581dB and equal to the total loss of the Y-branch. The loss of the fabricated Y-branch waveguide on PSG film ws 1.6dB at .lambda.=1.3.mu.m before annealing but was 1.2dB after annealing at 1000.deg. C for 10 minutes. Consequently, the loss of branching area from 3000.mu.m to 6000.mu.m in the z-direction was 0.8dB, and single-mode propagation was confirmed by measuring the near field pattern. For coupling the fabricated Y-branch waveguide with an optical fiber, we fabricated V-groove which was used as the upholder of optical fiber. An etching angle was 54.deg. and the width and depth of guiding groove was 150.mu.m, 70.mu.m, respectively. The optical fiber is inserted onto V-groove. Both the Y-branch and V-groove were connected through the index matching oil. Coupling loss after connecting Y-branch and the optical fiber on V-groove was 0.34dB and that after injecting index mateching oil was 0.14dB.

  • PDF

Simulation of the Structural Parameters of Anti-resonant Hollow-core Photonic Crystal Fibers

  • Li, Qing;Feng, Yujun;Sun, Yinhong;Chang, Zhe;Wang, Yanshan;Peng, Wanjing;Ma, Yi;Tang, Chun
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 2022
  • Anti-resonant hollow-core photonic crystal fiber (AR-HCF) has unique advantages, such as low nonlinearity and high damage threshold, which make it a promising candidate for high-power laser delivery at distances of tens of meters. However, due to the special structure, optical properties such as mode-field profile and bending loss of hollow-core fibers are different from those of solid-core fibers. These differences have limited the widespread use of AR-HCF in practice. In this paper we conduct numerical analysis of AR-HCFs with different structural parameters, to analyze their influences on an AR-HCF's optical properties. The simulation results show that with a 23-㎛ air-core diameter, the fundamental mode profile of an AR-HCF can well match that of the widely used Nufern's 20/400 fiber, for nearly-single-mode power delivery applications. Moreover, with the ratio of cladding capillary diameter to air-core diameter ranging from 0.6 to 0.7, the AR-HCF shows excellent optical characteristics, including low bending sensitivity while maintaining single-mode transmission at the same time. We believe these results lay the foundation for the application of AR-HCFs in the power delivery of high power fiber laser systems.

Effect of High Temperature Steam Oxidation on Yielding of Zircaloy-4 PWR Fuel Cladding -Expanding Copper Mandrel Test- (가압경수형 핵연료 피복관 지르칼로이-4의 항복현상에 대한 고온 수증기 산화의 영향 -구리 맨드렐 팽창시험법-)

  • Kye-Ho Nho;Sun-Pil Choi;Byong-Whi Lee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.111-122
    • /
    • 1989
  • With the Zircaloy-4 tube oxidized in high temperature (1323 K) steam for 5, 10, 30 and 60 minutes, the expanding copper mandrel test was carried out over a temperature range of 673-l173k at $\varepsilon\;=\;3.0\times10^5S\;^1$. The oxidation parameters $(K_i)$ in the present study were linearly proportional to square root of time $(Ki= \delta_{kit})$ and their rate constants ($\delta_{ki}$) are 0.281, 2.82, and 2.313 for weight gain and thickness of Zr02 and $\alpha$(0) layer, respectively. Activation energy for high temperature (873-1073k) plastic deformation of Zircaloy-4 increases from 251 KJ/mol to 323 KJ/mol with increase in oxidation time from 5 minutes to 60 minutes due to the high strengthened Zr02. With the oxide layer thickness [K ; expressed in "Equivalent Cladding Reacted" (ECR,%)] and the yield stress obtained from the mandrel test, an empirical relation was derived as ($\sigma/C)^n=K^mexp$ (Q/RT) with n=6.9, m=5.7, C=0.155, 0.138, 0.051, and 0.046 MPa for Q=251, 258, 316, 323 KJ/mol, respectively.

  • PDF

The design of a single layer antireflection coating on the facet of buried channel waveguide devices using the angular spectrum method and field profiles obtained by the variational method (Variational 방법으로 구한 필드 분포와 Angular Spectrum 방법을 사용한 Buried채널 도파로 소자 단면의 단층 무반사 코팅 설계)

  • 김상택;김형주;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2002
  • We have calculated the optimum refractive index and normalized thickness of a single layer antireflection coating on the facet of buried channel waveguides as a function of waveguide width for several waveguide depths using the angular spectrum method and field profiles obtained by the effective index method (EIM) and the variational method (VM), respectively, and discussed the results. In the area of large waveguide width, the optimum parameters of a single layer antireflection coating obtained by both methods are almost the same. However, as waveguide width decreases, the parameters obtained by the VM approach those of a single layer antireflection coating between cladding layer and air, while those obtained by the EIM do not approach those, and the difference between the two parameters is large. The tolerance maps of the quasi-TE and quasi-TM modes obtained by the VM for square waveguides are located in almost the same area regardless of refractive index contrast, while those obtained by the free space radiation mode (FSRM) method for refractive index contrast of 10% are located in the different area. Thus, we think that the tolerance maps obtained by the VM are more exact than those obtained by the FSRM method.

Evaluation of Pressure-Temperature Limit Curve for the Safe Operation of an RFV based on 3-D Finite Element Analyses (유한요소해석을 이용한 원자로용기 압력-온도 한계곡선의 평가)

  • Lee, Taek-Jin;Park, Yun-Won;Lee, Jin-Ho;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1567-1574
    • /
    • 2001
  • In order to operate an RPV safely it is necessary to keep the pressure-temperature (P-T) limit during the heatup and cooldown process. While the ASME Code provides the P-T limit curve for safe operation, this limit curve has been prepared under conservative assumptions In this paper the effects of conservative assumptions involved in the P-T limit curve specified in the ASME Code Sec. XI were investigated. Three different parameters the crack depth the cladding thickness and the cooling rate, were reviewed based on 3-D finite element analyses. Also the constraint effect on P-T limit curve generation was investigated based on J- T approach. It was shown that the crack depth and the constraint effect change the safe region in P-T limit curve significantly Therefore it is recommended to prepare a more precise P-T limit curve based on finite element analysis to obtain P-T limit for safe operation of an RPV.

Effects of $N_2O$/$SiH_4$Flow Ratio and RF Power on Properties of $SiO_2$Thick Films Deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 $SiO_2$후막 특성에서 $N_2O$/$SiH_4$Flow Ratio와 RF Power가 미치는 영향)

  • 조성민;김용탁;서용곤;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1037-1041
    • /
    • 2001
  • Silicon diosixde thick film using silica optical waveguide cladding was fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) method, at a low temperature (32$0^{\circ}C$) and from (SiH$_4$+$N_2$O) gas mixtures. The effects of deposition parameters on properties of SiO$_2$thick films were investigated by variation of $N_2$O/SiH$_4$flow ratio and RF power. As the $N_2$O/SiH$_4$flow ratio decreased, deposition rate increased from 2.9${\mu}{\textrm}{m}$/h to maximum 10.1${\mu}{\textrm}{m}$/h. As the RF power increased from 60 W to 120 W, deposition rate increased (5.2~6.7 ${\mu}{\textrm}{m}$/h) and refractive index approached at thermally grown silicon dioxide (n=1.46).

  • PDF

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.