• Title/Summary/Keyword: Cl Stabilization

Search Result 114, Processing Time 0.017 seconds

A Study for Influence of Salt on Stabilized Marin Clay with Lime and Cement (해성점토의 석회 및 시멘트 안정처리에 미치는 염분의 영향)

  • 정두영;이병석
    • Geotechnical Engineering
    • /
    • v.7 no.4
    • /
    • pp.49-64
    • /
    • 1991
  • Abstract The stabilization by lime or Portland cement has long been the most commonly used methods for clay soil. But it wart the purpose of this reserch to define the effectiveness malt content on unconfined compressive strength of limeflay mixture and cementrlay mixture. From result of a laboratary investigation, saInt content in sample soil was not concernd with variation of PH value. PH value of lime 10% mixture and of cement 10% mixture were near 12.4, 11.6 respectively. In case of more than 7 curing days, PH value and Ca++ion concentration were decreased with increasing curing time. Also the result of X-ray difflection analysib for stabilized soil by admixture 10% in 90 curing days showed that the diffrection intensity of Tobermorite and Ettringite and other reaction products was smaller in the case of addition of salt 8% than malt 0% in stabilized soil. When lime-soil mixture and cement-boil mixture were cured in 2$0^{\circ}C$ and 5$^{\circ}C$, 2$0^{\circ}C$ cured mizture produced significantly higher compressive strength than 5t cured mixture and air dry curing sample produced higher than cured sample in water. The addition of salt 2~4% in conjuntion with lime or cement may accelerate strenth gain or not prevent front However, the addition of salt 8% prevent from strength gams.

  • PDF

A study on the Effect of Calcium Chloride Admixture on strengths of Concrete (혼화제인 염화칼슘이 콘크리트 강도에 미치는 영향에 관한 연구)

  • Jun, Hyun-Woo;Lim, Chong-Kook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2419-2425
    • /
    • 1971
  • In many cold weather concrete constructison jobs calcium chloride $CaCl_2$ can be used safely as an accelerating admixture. For producing satisfactory concrete during cold weather calcium chloride is used to develop the level of strength required in a shorter period by obtaining higher early strength, the resulting in crease in heat of hydration. In this paper, to get adequated data and information of the effect on strength of concrete in using calcium chloride as an accelerating admixture, Portland cement (Type I), High-early-strength cement(Type II) and Pozzolans cement with certain 1.5 percentage of calcium chloride by weight of the cement were tested. As the result of this experiment, followings were founded: 1. At the 1.5 percent of calcium chloride cement ratio, the early strength was accelerated to the highest level, and some 1.5 percent of calcium chloride cement ratio was suitable for the stabilization of the concrete structures. 2. For Some 50 percent of Water Cement ratio was suitable, making good Concrete in the Cold weather by admixture of Calicum Chloide. 3. The concrete of Pozzorans cement in early strength was weak but that in later rised by degree. 4. As abtaining higher early strength the curing period can be reduced, but the finishing work should be done as early as possible.

  • PDF

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.

Cardioprotective Effect of Calcium Preconditioning and Its Relation to Protein Kinase C in Isolated Perfused Rabbit Heart (적출관류 토끼 심장에서 칼슘 전처치에 의한 심근보호 효과와 Protein Kinase C와의 관계)

  • 김용한;손동섭;조대윤;양기민;김호덕
    • Journal of Chest Surgery
    • /
    • v.32 no.7
    • /
    • pp.603-612
    • /
    • 1999
  • Background : It has been documented that brief repetitive periods of ischemia and reperfusion (ischemic preconditioning, IP) enhances the recovery of post-ischemic contractile function and reduces infarct size after a longer period of ischemia. Many mechanisms have been proposed to explain this process. Recent studies have suggested that transient increase in the intracellular calcium may have triggered the activation of protein kinase C(PKC); however, there are still many controversies. Accordingly, the author performed the present study to test the hypothesis that preconditioning with high concentration of calcium before sustained subsequent ischemia(calcium preconditioning) mimics IP by PKC activation. Material and Method : The isolated hearts from the New Zealand White rabbits(1.5∼2.0 kg body weight) Method: The isolated hearts from the New Zealand White rabbits(1.5∼2.0 kg body weight) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to 45-minute global ischemia followed by a 120-minute reperfusion with IP(IP group, n=13) or without IP(ischemic control, n=10). IP was induced by single episode of 5-minute global ischemia and 10-minute reperfusion. In the Ca2+ preconditioned group, perfusate containing 10(n=10) or 20 mM(n=11) CaCl2 was perfused for 10 minutes after 5-minute ischemia followed by a 45-minute global ischemia and a 120-minute reperfusion. Baseline PKC was measured after 50-minute perfusion without any treatment(n=5). Left ventricular function including developed pressure(LVDP), dP/dt, heart rate, left ventricular end-diastolic pressure(LVEDP) and coronary flow(CF) was measured. Myo car ial cytosolic and membrane PKC activities were measured by 32P-${\gamma}$-ATP incorporation into PKC-specific pepetide. The infarct size was determined using the TTC (tetrazolium salt) staining and planimetry. Data were analyzed using one-way analysis of variance(ANOVA) variance(ANOVA) and Tukey's post-hoc test. Result: IP increased the functional recovery including LVDP, dP/dt and CF(p<0.05) and lowered the ascending range of LVEDP(p<0.05); it also reduced the infarct size from 38% to 20%(p<0.05). In both of the Ca2+ preconditioned group, functional recovery was not significantly different in comparison with the ischemic control, however, the infarct size was reduced to 19∼23%(p<0.05). In comparison with the baseline(7.31 0.31 nmol/g tissue), the activities of the cytosolic PKC tended to decrease in both the IP and Ca2+ preconditioned groups, particularly in the 10 mM Ca2+ preconditioned group(4.19 0.39 nmol/g tissue, p<0.01); the activity of membrane PKC was significantly increased in both IP and 10 mM Ca2+ preconditioned group (p<0.05; 1.84 0.21, 4.00 0.14, and 4.02 0.70 nmol/g tissue in the baseline, IP, and 10 mM Ca2+ preconditioned group, respectively). However, the activity of both PKC fractions were not significantly different between the baseline and the ischemic control. Conclusion: These results indicate that in isolated Langendorff-perfused rabbit heart model, calcium preconditioning with high concentration of calcium does not improve post-ischemic functional recovery. However, it does have an effect of limiting(reducing) the infart size by ischemic preconditioning, and this cardioprotective effect, at least in part, may have resulted from the activation of PKC by calcium which acts as a messenger(or trigger) to activate membrane PKC.

  • PDF