• Title/Summary/Keyword: Civil code

Search Result 1,178, Processing Time 0.031 seconds

Modifier parameters and quantifications for seismic vulnerability assessment of reinforced concrete buildings

  • Oumedour, Amira;Lazzali, Farah
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2022
  • In recent years, some studies have identified and quantified factors that can increase or decrease the seismic vulnerability of buildings. These modifier factors, related to the building characteristics and condition, are taken into account in the vulnerability assessment, by means of a numerical estimation resulting from the quantification of these modifiers through vulnerability indexes. However, views have differed on the definition and the quantification of modifiers. In this study, modifier parameters and scores of the Risk-UE Level 1 method are adjusted based on the Algerian seismic code recommendations and the reviews proposed in the literature. The adjusted modifiers and scores are applied to reinforced concrete (RC) buildings in Boumerdes city, in order to assess probable seismic damage. Comparison between estimated damage and observed damage caused by the 2003 Boumerdes earthquake is done, with the objective to (i) validate the model involving influence of the modifier parameters on the seismic vulnerability, and (ii) to define the relationship between modifiers and damage. This research may help planners in improving seismic regulations and reducing vulnerability of existing buildings.

DEVELOPMENT OF LEGALITY SYSTEM FOR BUILDING ADMINISTRATION PERMISSION SERVICE BASED ON BIM

  • Inhan Kim;Jungsik Choi
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.593-600
    • /
    • 2009
  • In Korea, the government has developed SEUMTER, an administration system for building related public service, to facilitate and promote the electronic submission and permission activities. SEUMTER is progressing legality system based on 2D drawing for building administration permission service. However, there are a lot of problems related to legality system owing to complexity of Korea regulation relation and structure, inefficiency of legality system based on 2D drawing, duplication examination of document (soliciting forms for civil affairs) and drawing. Therefore, the purpose of this study is to develop legality system for building administration permission service based on BIM in Korea. To achieve this purpose, the authors have investigated permission procedure and regulation structure that is used in current building administration permission and suggested permission procedure and regulation structure for legality system based on BIM. In addition, the authors have investigated element technologies (for examples, method of structured regulation, BIM model checker, Viewer, etc) for legality system based on BIM. Finally, the authors have suggested strategy and hereafter direction for application of legality system based on BIM.

  • PDF

A Study of Recent Trend and Revision Draft of the Chinese Arbitration Law (중국의 2021년중재법 개정안과 그 시사점)

  • Li, Yang;Kim, Yongkil
    • Journal of Arbitration Studies
    • /
    • v.31 no.4
    • /
    • pp.29-49
    • /
    • 2021
  • The Chinese Arbitration Law came into force in 1995 and has been implemented for 26 years. As a party to the New York Convention, there are many contradictions and conflicts between the Chinese Arbitration Law and the New York Convention on the issue of ad hoc arbitration, and this institutional disconnection can bring about problems such as misalignment of arbitration powers. On July 30, 2021, China's Ministry of Justice published a draft of the revised Arbitration Law for public consultation, and the draft has generated a lively debate among the public. This article explores the reasonable and inadequate points of the draft of Arbitration Law in light of the recent trends in the use of commercial arbitration in China, the COVID-19, the Free Trade Zone, and the relationship between the Civil Code and the Arbitration Law.

SPH simulation of solitary wave interaction with coastal structures

  • Cai, Guozhen;Luo, Min;Wei, Zhaoheng;Khayyer, Abbas
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.285-300
    • /
    • 2022
  • This paper adopts the Smoothed Particle Hydrodynamics (SPH) open-source code SPHinXsys to study the solitary wave interaction with coastal structures. The convergence properties of the model in terms of particle size and smoothing length are tested based on the example of solitary wave propagation in a flat-bottom wave flume. After that, the solitary wave interactions with a suspended submerged flat plate and deck with girders are studied. The wave profile and velocity field near the surface of the structures, as well as the wave forces exerted onto the structures are analyzed.

Numerical analysis for the punching shear resistance of SFRC flat slabs

  • Baraa J.M. AL-Eliwi;Mohammed S. Al Jawahery
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.425-438
    • /
    • 2023
  • In this article, the performance of steel fiber-reinforced concrete (SFRC) flat slabs was investigated numerically. The influence of flexural steel reinforcement, steel fiber content, concrete compressive strength, and slab thickness were discussed. The numerical model was developed using ATENA-Gid, user-friendly software for non-linear structural analysis for the evaluation and design of reinforced concrete elements. The numerical model was calibrated based on eight experimental tests selected from the literature to validate the actual behavior of steel fiber in the numerical analysis. Then, a parametric study of 144 specimens was generated and discussed the impact of various parameters on the punching shear strength, and statistical analysis was carried out. The results showed that slab thickness, steel fiber content, and concrete compressive strength positively affect the punching shear capacity. The fib Model Code 2010 for specimens without steel fibers and the model of Muttoni and Ruiz for SFRC specimens presented a good agreement with the results of this study.

Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces (일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가)

  • Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.

Resistance Factor and Target Reliability Index Calculation of Static Design Methods for Driven Steel Pipe Pile in Gwangyang (광양지역에 적합한 항타강관말뚝의 목표신뢰성지수 및 저항계수 산정)

  • Kim, Hyeon-Tae;Kim, Daehyeon;Lim, Jae-Choon;Park, Kyung-Ho;Lee, Ik-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8128-8139
    • /
    • 2015
  • Recently, the necessity of developing the load and resistance factor design(LRFD) for soft ground improvement method has been raised, since the limit state design is requested as international technical standard for the foundation of structures. In this study, to develop LRFD codes for foundation structures in Korea, target reliability index and resistance factor for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 16 data(in Gwangyang) and the 57 data(Korea Institute of Construction Technology, 2008) sets of static load test and soil property tests conducted in the whole domestic area were collected along with available subsurface investigation results. The resistance bias factors were evaluated for the tow static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods : the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. As a result, when target reliability indices of the driven pipe pile were selected as 2.0, 2.33, 2.5, resistance factor of two design methods for SPT N at pile tip less than 50 were evaluated as 0.611~0.684, 0.537~0.821 respectively, and STP N at pile tip more than 50 were evaluated as 0.545~0.608, 0.643~0.749 respectively. The result from this research will be useful for developing various foundations and soil structures under LRFD.

Analytical Assessment of Blast Damage of 270,000-kL LNG Storage Outer Tank According to Explosive Charges (270,000 kL급 LNG 저장 탱크 외조의 폭발량에 따른 손상도 해석적 평가)

  • Kim, Jang-Ho Jay;Choi, Seung-Jai;Choi, Ji-Hun;Kim, Tae-Kyun;Lee, Tae-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.685-693
    • /
    • 2016
  • The outer tank of a liquefied natural gas (LNG) storage tank is a longitudinally and meridionally pre-stressed concrete (PSC) wall structure. Because of the current trend of constructing larger LNG storage tanks, the pre-stressing forces required to increase wall strength must be significantly increased. Because of the increase in tank sizes and pre-stressing forces, an extreme loading scenario such as a bomb blast or an airplane crash needs to be investigated. Therefore, in this study, the blast resistance performance of LNG storage tanks was analyzed by conducting a blast simulation to investigate the safety of larger LNG storage tanks. Test data validation for a blast simulation of reinforced concrete panels was performed using a specific FEM code, LS-DYNA, prior to a full-scale blast simulation of the outer tank of a 270,000-kL LNG storage tank. Another objective of this study was to evaluate the safety and serviceability of an LNG storage tank with respect to varying amounts of explosive charge. The results of this study can be used as basic data for the design and safety evaluation of PSC LNG storage tanks.

The Information Modeling Method based on Extended IFC for Alignment-based Objects of Railway Track (선형중심 객체 관리를 위한 확장된 IFC 기반 철도 궤도부 정보모델링 방안)

  • Kwon, Tae Ho;Park, Sang I.;Seo, Kyung-Wan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.339-346
    • /
    • 2018
  • An Industry Foundation Classes(IFC), which is a data schema developed focusing on architecture, is being expanded to civil engineering structures. However, it is difficult to create an information model based on extended IFC since the BIM software cannot provide support functions. To manage a railway track based on the extended IFC, this paper proposed a method to create an alignment-centered separated railway track model and convert it to an extended IFC-based information model. First, railway track elements have been classified into continuous and discontinuous structures. The continuous structures were created by an alignment-based software, and discontinuous structures were created as independent objects through linkage of the discretized alignment. Second, a classification system and extended IFC schema for railway track have been proposed. Finally, the semantic information was identified by using the property of classification code and user interface. The availability of the methods was verified by developing an extended IFC-based information model of the Osong railway site.

Analysis of Albedo by Level-2 Land Use Using VIIRS and MODIS Data (VIIRS와 MODIS 자료를 활용한 중분류 토지이용별 알베도 분석)

  • Lee, Yonggwan;Chung, Jeehun;Jang, Wonjin;Kim, Jinuk;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1385-1394
    • /
    • 2022
  • This study was to analyze the change in albedo by level-2 land cover map for 20 years(2002-2021) using MODerate resolution Imaging Spectroradiometer (MODIS) data. Also, the difference from the MODIS data was analyzed using the 10-year (2012-2021) data of Visible Infrared Imaging Radiometer Suite (VIIRS). For the albedo data of MODIS and VIIRS, daily albedo data, MCD43A3 and VNP43IA, of 500 m spatial resolution of sinusoidal tile grid produced by Bidirectional Reflectance Distribution Function (BRDF) model were prepared for the South Korea range. Reprojection was performed using the code written based on Python 3.9, and the nearest neighbor was applied as the resampling method. White sky albedo and black sky albedo of shortwave were used for analysis. As a result of 20-year albedo analysis using MODIS data, the albedo tends to rise in all land use. Compared to the 2000s (2002-2011), the average albedo of the 2010s (2012-2021) showed the most significant increase of 0.0027 in the forest area, followed by the grass increase of 0.0024. As a result of comparing the albedo of VIIRS and MODIS, it was found that the albedo of VIIRS was larger from 0.001 to 0.1, which was considered to be due to differences in the surface reflectivity according to the time of image capture and sensor characteristics.