• Title/Summary/Keyword: Civil code

Search Result 1,181, Processing Time 0.039 seconds

Reinforced concrete structures with damped seismic buckling-restrained bracing optimization using multi-objective evolutionary niching ChOA

  • Shouhua Liu;Jianfeng Li;Hamidreza Aghajanirefah;Mohammad Khishe;Abbas Khishe;Arsalan Mahmoodzadeh;Banar Fareed Ibrahim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.147-165
    • /
    • 2023
  • The paper contrasts conventional seismic design with a design that incorporates buckling-restrained bracing in three-dimensional reinforced concrete buildings (BRBs). The suboptimal structures may be found using the multi-objective chimp optimization algorithm (MEN-ChOA). Given the constraints and dimensions, ChOA suffers from a slow convergence rate and tends to become stuck in local minima. Therefore, the ChOA is improved by niching and evolutionary operators to overcome the aforementioned problems. In addition, a new technique is presented to compute seismic and dead loads that include all of a structure's parts in an algorithm for three-dimensional frame design rather than only using structural elements. The performance of the constructed multi-objective model is evaluated using 12 standard multi-objective benchmarks proposed in IEEE congress on evolutionary computation. Second, MEN-ChOA is employed in constructing several reinforced concrete structures by the Mexico City building code. The variety of Pareto optimum fronts of these criteria enables a thorough performance examination of the MEN-ChOA. The results also reveal that BRB frames with comparable structural performance to conventional moment-resistant reinforced concrete framed buildings are more cost-effective when reinforced concrete building height rises. Structural performance and building cost may improve by using a nature-inspired strategy based on MEN-ChOA in structural design work.

Evaluation of Bond-Slip Behavior of High Strength Lightweight Concrete with Compressive Strength 120 MPa and Unit Weight 20 kN/m3 (압축강도 120 MPa, 단위중량 20 kN/m3 고강도 경량 콘크리트 부착-슬립 거동 평가)

  • Dong-Gil Gu;Jun-Hwan Oh;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The demand for lightweight and high-strength materials is increasing. However, studies on the bond of concrete and reinforcing bars for high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of 20 kN/m3 to structural members are lacking. Therefore, in this paper, 108 specimens of high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of about 20 kN/m3 were fabricated, a direct pull-out test was performed, and the bond characteristics were evaluated by comparing the test results with design code. Compared to the decrease in unit weight, the solid bubble shows relatively little reduction in compressive strength and modulus of elasticity. It was f ound to have larger slip and parameter values than concrete with low compressive strength and unit weight.

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Using an appropriate rotation-based criterion to account for torsional irregularity in reinforced concrete buildings

  • Akshara S P;M Abdul Akbar;T M Madhavan Pillai;Rakesh Pasunuti;Renil Sabhadiya
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.349-361
    • /
    • 2024
  • Excessive torsional behaviour is one of the major reasons for failure of buildings, as inferred from past earthquakes. Numerous seismic codes across the world specify a displacement-based or drift-based criterion for classifying buildings as torsionally irregular. In recent years, quite a few researchers have pointed out some of the inherent deficiencies associated with the current codal guidelines on torsional irregularity. This short communication paper aims to envisage the need for a revision of the displacement-based guidelines on torsional irregularity, and further highlight the appropriateness of a rotation-based criterion. A set of 6 reinforced concrete building models with asymmetric shear walls are analysed using ETABS v18.0.2, by varying the number of stories from 1 to 9, and the torsional irregularity coefficient of various stories is calculated using the displacement-based formula. Since rotation about the vertical axis is a direct indication of the twist experienced by a building, the calculated torsional irregularity coefficients of all stories are compared with the corresponding floor rotations. The conflicting results obtained for the torsional irregularity coefficients are projected through five categories, namely mismatch with floor rotations, inconsistency in trend, lack of clarity in incorporation of negative values, sensitivity to low values of displacement and error conceived in the mathematical formulation. The findings indicate that the irregularity coefficient does not accurately represent the torsional behaviour of buildings in a realistic sense. The Indian seismic code-based values of 1.2 and 1.4, which are used to characterize buildings as torsionally irregular are observed to be highly sensitive to the numerical values of displacements, rather than the actual degree of rotation. The study thus emphasizes the revision of current guidelines based on a more relevant rotation-based or eccentricity-based approach.

Curved finite strip and experimental study of thin stiffened composite cylindrical shells under axial compression

  • Mojtaba Rafiee;Hossein Amoushahi;Mehrdad Hejazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.181-197
    • /
    • 2024
  • A numerical method is presented in this paper, for buckling analysis of thin arbitrary stiffened composite cylindrical shells under axial compression. The stiffeners can be placed inside and outside of the shell. The shell and stiffeners are operated as discrete elements, and their interactions are taking place through the compatibility conditions along their intersecting lines. The governing equations of motion are obtained based on Koiter's theory and solved by utilizing the principle of the minimum potential energy. Then, the buckling load coefficient and the critical buckling load are computed by solving characteristic equations. In this formulation, the elastic and geometric stiffness matrices of a single curved strip of the shell and stiffeners can be located anywhere within the shell element and in any direction are provided. Moreover, five stiffened composite shell specimens are made and tested under axial compression loading. The reliability of the presented method is validated by comparing its numerical results with those of commercial software, experiments, and other published numerical results. In addition, by using the ANSYS code, a 3-D finite element model that takes the exact geometric arrangement and the properties of the stiffeners and the shell into consideration is built. Finally, the effects of Poisson's ratio, shell length-to-radius ratio, shell thickness, cross-sectional area, angle, eccentricity, torsional stiffness, numbers and geometric configuration of stiffeners on the buckling of stiffened composite shells with various end conditions are computed. The results gained can be used as a meaningful benchmark for researchers to validate their analytical and numerical methods.

Air Carrier's Civil Liability for Overbooking (항공권의 초과예약(Overbooking)에 관한 항공사의 민사책임)

  • Kwon, Chang-Young
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.31 no.1
    • /
    • pp.99-144
    • /
    • 2016
  • The summary of the case is as follows: a Korean passenger booked and purchased a business class ticket from Air France that was scheduled to depart from Paris and arrive in Seoul. When the passenger arrived at the check-in counter, he was told that all business class seats were occupied. It was because the flight was overbooked by Air France. The passenger cancelled the Air France flight and took another air carrier. After arriving in Korea, he brought suit against Air France for damages. The purpose of this article is to discuss the governing law when interpreting the contract of international air carriage in accordance with the Korean Private International Act (2001) and to analyze air carrier's civil liability for the bumped passenger in the overbooking case. If the parties have not chosen the applicable law the contract shall be governed by the law of the habitual residence of the consumer in the following situations: prior to the conclusion of the contract, the opposite party of the consumer conducted solicitation of transactions and other occupational or business activities by an advertisement in that country or conducted solicitation of transactions and other occupational or business activities by an advertisement into that country from the areas outside that country and the consumer took all the steps necessary for the conclusion of the contract in that country or in case the opposite party of the consumer received an order of the consumer in that country [Article 27 (1), (2) of the Private International Act]. Since the contract of international carriage falls into the consumer contract, the Supreme Court viewed that the governing law of the contract in this case would be the law of the habitual residence of the consumer (Supreme Court Decision 2013Da8410 decided on Aug. 28, 2014). This interpretation differs from the article 5 (4) of Rome Convention(80/934/EEC) which declares that the consumer contract article shall not apply to neither a contract of carriage nor a contract for the supply of services where the services are to be supplied to the consumer exclusively in a country other than that in which he has his habitual residence. Even though overbooking can be considered as a common industry practice, an air carrier must burden civil liability in case of breach of contract for the involuntary bumped passenger(Seoul Central District Court Decision 2014Na48391 decided on Jan. 29, 2015). In case of involuntary bumping, an air carrier must offer re-routing to passenger's final destination by an alternative flight. If an air carrier fails to effect performance in accordance with the tenor and purport of the obligation, the involuntary bumped passenger may claim damages(Article 390 of the Civil Code).

Calculation of Maximum Effective Temperature of Steel Box Girder Bridge Using Artificial Neural Network (인공신경망을 이용한 강박스거더의 유효온도 산정)

  • Lee, Seong- Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.96-103
    • /
    • 2018
  • An analysis using a statistical method is generally used to determine the effective temperature based on the temperature design load of a bridge. In this study, the effective temperature was calculated by building an artificial neural network (ANN) capable of improving the statistical method. A Steel box girder bridge specimen was made with a width of 2.0 m, height of 2.0 m, and length of 3.0 m and 0.2 m the upper slab. Twenty one temperature gauges were attached to measure the temperature between 2014 and 2016 for three years. An ANN was learned using the data measured from 2014~2015 and the results were compared with the Euro codes. The error rate between the Euro code and statistical analysis values was analyzed to be 4.1 % for the total measurement point. The ANN was verified and the effective bridge temperatures were calculated using the temperature data measured in 2016. The results revealed an approximate 3.97 % difference from the statistical analysis values. This degree of error is considered to be acceptable in terms of engineering for the analysis of an ANN. An ANN can easily predict the effective temperature of a bridge by knowing the input values of the region's highest temperature, bridge type, and upper asphalt thickness when designing the bridge's temperature loads.

Experimental Study on the Effective Temperature Calculation of Concrete Box Girder Bridge (콘크리트 박스거더교의 설계 유효온도 산정을 위한 실험적 연구)

  • Lee, Seong-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.740-745
    • /
    • 2020
  • To calculate the reasonable design temperature load of a concrete box girder bridge, one bridge test specimen was made. The temperature gauges installed on the bridge test specimen measured 48 sets of temperature per day at 30-minute intervals during the summer and winter periods of one year. The temperature measured at each station was treated statistically to calculate the trend line and standard error, and the temperature distribution and trend line at the representative station were presented. The maximum effective temperature and the lowest effective temperature were calculated from the air temperature suggested by Euro code. The maximum effective temperature was calculated to be 1.5 to 2℃ higher than the Euro code at 35℃ and above. In comparison, the lowest effective temperature was 0.5 to 1.1℃ lower at -13℃ to-19℃. Compared to the effective temperature of this study according to the highest and lowest 50-year frequency of the Yangsan region, the highest effective temperature was 4.7℃ higher, and the lowest effective temperature was 4.5℃ lower. Considering the increasing climate change and reflecting the results of this analysis, it is deemed necessary to make the current temperature design standards larger.

Prediction of Shear Strength in High-Strength Concrete Beams without Web Reinforcement Considering Size Effect (크기효과를 고려한 복부보강이 없는 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Bae, Young-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.820-828
    • /
    • 2003
  • Recent research has indicated that the current ACI shear provision provides unconservative predictions for large slender beams and beams with low level of longitudinal reinforcement, and conservative results for deep beams. To modify some problems of ACI shear provision, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear prism in strut-tie model deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, effective depth, longitudinal reinforcement ratio, concrete compressive strength and shear span-to-depth ratio, about 300 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim &Park's equation and Zsutty's equation. The proposed shear equation is not only simpler than other shear equations, it is but also shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practical shear design.