• Title/Summary/Keyword: Civil UAV

Search Result 192, Processing Time 0.026 seconds

Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs (중복도와 지상기준점에 따른 고정익 UAV 기반 정사영상 및 DSM의 품질 평가)

  • Yoo, Yong Ho;Choi, Jae Wan;Choi, Seok Keun;Jung, Sung Heuk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.3-9
    • /
    • 2016
  • UAV(unmanned aerial vehicle) can quickly produce orthoimage with high-spatial resolution and DSM(digital surface model) at low cost. However, vertical and horizontal positioning accuracy of orthoimage and DSM, which are obtained by UAV, are influenced by image processing techniques, quality of aerial photo, the number and position of GCPs(ground control points) and overlap in flight plan. In this study, effects of overlap and the number of GCPs are analyzed in orthoimage and DSM. Positioning accuracy are estimated based on RMSE(root mean square error) by using dataset of nine pairs. In the experiments, Overlaps and the number of GCPs have influence on horizontal and vertical accuracy of orthoimage and DSM.

Accuracy Analysis of UAV Data Processing Using DPW (DPW를 이용한 UAV 자료 처리의 정확도 분석)

  • Choi, Yun Woong;You, Ji Ho;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.3-10
    • /
    • 2015
  • The various studies and applications for UAVS(Unmaned Aerial Vehicle System) have been recently increased as a new technology to create 3D spatial information rapidly and accurately. UAV(Unmanned Aerial Vehicle) is economical when comparing with conventional technique, such as satellite and aerial survey, and can quickly obtain high resolution data under 5cm. This paper examined the utilizing possibility to creating 3D spatial information and analysis the compatibility the UAV data obtained by non-metric digital camera with conventional numerical photogrammetric system. The DEM and normal orthophoto is created by exclusive S/W and DPW(Digital Photogrammetry Workstation) then analysis the accuracy of created data. As a result, the accuracy of the created DEM and normal orthophoto, which is obtained by UAV then processed by DPW, is not satisfied;so it is estimated that the compatibility the UAV data with conventional numerical photogrammetric system is low.

Availability Evaluation for Generation of Geospatial Information using Fixed Wing UAV (고정익 무인항공기를 이용한 공간정보 구축의 활용성 평가)

  • Park, Young Jin;Jung, Kap Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.159-164
    • /
    • 2014
  • These days, inexpensive and high efficiency UAV of disaster prevention and spatial information has been given more attention. But studies about test of accuracy of UAV were not enough despite high interest. This research produced DSM and ortho photo and estimated accuracy by comparing coordinates with GNSS survey to evaluate outcome of fixed wing UAV. The ortho photo was found to make use of it to update 1/1,000 map. This research investigated spatial information construction using existing terrestrial LiDAR to suggest effectiveness of fixed wing UAV.

Status and Characteristics of Unmanned Aerial Vehicle Gas Turbine Engines (무인 항공기 가스터빈 추진기관의 현황 및 특성 연구)

  • Joo, Milee;Choi, Seongman;Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.61-72
    • /
    • 2020
  • Performance characteristics of propulsion systems applied to UAVs that under development or completed in foreign countries were analyzed. In this study, aircraft mission and performance characteristics of ten UAVs were reviewed and compared with current available civil and military aircraft. Also performance characteristics of UAVs propulsion systems were summarized and engine design parameters were analyzed. Thrust, SFC and design parameters such as pressure ratio and bypass ratio of UAV propulsion system were compared with the current existing civil and military aircraft engines. From this study, the design parameters of the propulsion system applied to the UAV were well understood.

Feature-based Matching Algorithms for Registration between LiDAR Point Cloud Intensity Data Acquired from MMS and Image Data from UAV (MMS로부터 취득된 LiDAR 점군데이터의 반사강도 영상과 UAV 영상의 정합을 위한 특징점 기반 매칭 기법 연구)

  • Choi, Yoonjo;Farkoushi, Mohammad Gholami;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.453-464
    • /
    • 2019
  • Recently, as the demand for 3D geospatial information increases, the importance of rapid and accurate data construction has increased. Although many studies have been conducted to register UAV (Unmanned Aerial Vehicle) imagery based on LiDAR (Light Detection and Ranging) data, which is capable of precise 3D data construction, studies using LiDAR data embedded in MMS (Mobile Mapping System) are insufficient. Therefore, this study compared and analyzed 9 matching algorithms based on feature points for registering reflectance image converted from LiDAR point cloud intensity data acquired from MMS with image data from UAV. Our results indicated that when the SIFT (Scale Invariant Feature Transform) algorithm was applied, it was able to stable secure a high matching accuracy, and it was confirmed that sufficient conjugate points were extracted even in various road environments. For the registration accuracy analysis, the SIFT algorithm was able to secure the accuracy at about 10 pixels except the case when the overlapping area is low and the same pattern is repeated. This is a reasonable result considering that the distortion of the UAV altitude is included at the time of UAV image capturing. Therefore, the results of this study are expected to be used as a basic research for 3D registration of LiDAR point cloud intensity data and UAV imagery.

A Comparative Analysis between Photogrammetric and Auto Tracking Total Station Techniques for Determining UAV Positions (무인항공기의 위치 결정을 위한 사진 측량 기법과 오토 트래킹 토탈스테이션 기법의 비교 분석)

  • Kim, Won Jin;Kim, Chang Jae;Cho, Yeon Ju;Kim, Ji Sun;Kim, Hee Jeong;Lee, Dong Hoon;Lee, On Yu;Meng, Ju Pil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.553-562
    • /
    • 2017
  • GPS (Global Positioning System) receiver among various sensors mounted on UAV (Unmanned Aerial Vehicle) helps to perform various functions such as hovering flight and waypoint flight based on GPS signals. GPS receiver can be used in an environment where GPS signals are smoothly received. However, recently, the use of UAV has been diversifying into various fields such as facility monitoring, delivery service and leisure as UAV's application field has been expended. For this reason, GPS signals may be interrupted by UAV's flight in a shadow area where the GPS signal is limited. Multipath can also include various noises in the signal, while flying in dense areas such as high-rise buildings. In this study, we used analytical photogrammetry and auto tracking total station technique for 3D positioning of UAV. The analytical photogrammetry is based on the bundle adjustment using the collinearity equations, which is the geometric principle of the center projection. The auto tracking total station technique is based on the principle of tracking the 360 degree prism target in units of seconds or less. In both techniques, the target used for positioning the UAV is mounted on top of the UAV and there is a geometric separation in the x, y and z directions between the targets. Data were acquired at different speeds of 0.86m/s, 1.5m/s and 2.4m/s to verify the flight speed of the UAV. Accuracy was evaluated by geometric separation of the target. As a result, there was an error from 1mm to 12.9cm in the x and y directions of the UAV flight. In the z direction with relatively small movement, approximately 7cm error occurred regardless of the flight speed.

Survey of coastal topography using images from a single UAV (단일 UAV를 이용한 해안 지형 측량)

  • Noh, Hyoseob;Kim, Byunguk;Lee, Minjae;Park, Yong Sung;Bang, Ki Young;Yoo, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1027-1036
    • /
    • 2023
  • Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.

Analysis of Cropland Spectral Properties and Vegetation Index Using UAV (UAV를 이용한 농경지 분광특성 및 식생지수 분석)

  • LEE, Geun-Sang;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.86-101
    • /
    • 2019
  • Remote sensing technology has been continuously developed both quantitatively and qualitatively, including platform development, exploration area, and exploration functions. Recently, the use cases and related researches in the agricultural field are increasing. Also, since it is possible to detect and quantify the condition of cropland and establish management plans and policy support for cropland and agricultural environment, it is being studied in various fields such as crop growth abnormality determination and crop estimation based on time series information. The purpose of this study was to analyze the vegetation index for agricultural land reclamation area using a UAV equipped with a multi-spectral sensor. In addition, field surveys were conducted to evaluate the accuracy of vegetation indices calculated from multispectral image data obtained using UAV. The most appropriate vegetation index was derived by evaluating the correlation between vegetation index calculated by field survey and vegetation index calculated from UAV multispectral image, and was used to analyze vegetation index of the entire area.

Erosion and Sedimentation Monitoring of Coastal Region using Time Series UAV Image (시계열 UAV 영상을 활용한 연안지역 침식·퇴적 변화 모니터링)

  • CHO, Gi-Sung;HYUN, Jae-Hyeok;LEE, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • In order to promote efficient coastal management, it is important to continuously monitor the characteristics of the terrain, which are changed by various factors. In this study, time series UAV images were taken of Gyeokpo beach. And the standard deviation of ±11cm(X), ±10cm(Y), and ±15cm(Z) was obtained as a result of comparing with the VRS measurement performance for UAV position accuracy evaluation. Therefore, it was confirmed that the tolerance of the digital map work rule was satisfied. In addition, as a result of monitoring the erosion and sedimentation changes using the DSM(digital surface model) constructed through UAV images, an average of 0.01 m deposition occurred between June 2018 and December 2018, and in December 2018 and June 2019. It was analyzed that 0.03m of erosion occurred. Therefore, 0.02m of erosion occurred between June 2018 and June 2019. From the topographical change analysis results, the area of erosion and sediment height was analyzed, and the area of erosion and sedimentation was widely distributed in the ±0.5m section. If we continuously monitor the topographical changes in the coastal regions by using the 3D terrain modeling results using the time series UAV images presented in this study, we can support the coastal management tasks such as supplement or dredging of sand.