• 제목/요약/키워드: Civil Movement

검색결과 583건 처리시간 0.02초

USN을 이용한 사면거동 탐지 (Slope Movement Detection using Ubiquitous Sensor Network)

  • 장기태;;정천석;정훈
    • 한국재난관리표준학회지
    • /
    • 제1권2호
    • /
    • pp.61-66
    • /
    • 2008
  • 국토의 70% 이상이 산지로 구성되어 있어서 도로와 철도 건설을 위해 절토사면이 필연적으로 발생한다 우기, 동절기 서리로 인한 지반융기, 그리고 해빙은 암석 탈락과 사면붕괴의 원인이 되며 매년 사면붕괴에 의한 차량파손과 인명피해가 증가하고 있다. 인명과 재산을 보호하기 위해 사연붕괴를 조기에 탐지할 수 있는 실시간 모니터링 시스템이 필요하다. GMG사에서 개발한 병진 회전 침하(TRS) 센서를 사면 내에 설치하여 실시간으로 사면을 모니터링을 할 수 있도록 했으나, 시스템의 데이터 획득체계가 취약하여 순간적인 낙뢰에 의해 전체 시스템이 손상될 수 있다. 따라서 저자들은 USN(Ubiquitous Sensor Network)을 제시하여 낙뢰에 의한 손상을 최소화시키고 신뢰도 높은 사면 변형 모니터링 체계를 구축했다.

  • PDF

FOD 자동탐지시스템 요구사항 분석 (Analysis for FOD Automatic Detection System)

  • 김성훈;박명규;홍교영;소준수;김상권;김우리얼
    • 한국항행학회논문지
    • /
    • 제20권3호
    • /
    • pp.210-217
    • /
    • 2016
  • 전 세계 공항의 이동지역 내 이물질인 FOD (foreign object defective)에 의한 피해 량이 연간 2억불에 달하고 있다. 2000년 샤를드골 공항에서는 FOD로 인한 133명의 인명피해가 발생하기도 했다. 국내에도 각 공항별로 FOD로 인한 사고발생 및 장비의 수리 등 직 간접적인 피해가 발생하고 있는 상황이다. 이에 항공안전기술개발 사업의 일환으로 공항 내 항공기 이동지역 이물질 자동탐지 시스템의 개발이 진행 중에 있다. 분석 결과에 의하면 운용 방식의 특성상 민간 공항의 경우 고정식 감시를 요구했고 군 공항은 이동식을 선호했다. 본 논문에서는 군 민간 FOD 탐지 시스템의 요구조건을 파악하여 국내 조건에 맞는 최소 성능 사양을 분석하였다.

천연염료 실크스크린 기법의 텍스타일 디자인 제작에 관한 연구 (A Study on Eco-Friendly Jaquard Fabric Design Utilizing Natural Dyed Silk Screen Printing)

  • 이애자
    • 한국의류산업학회지
    • /
    • 제18권4호
    • /
    • pp.412-423
    • /
    • 2016
  • This paper explores the possibility, and suggests an experimental procedure, of industrial application of traditional textile design techniques, such as hand silkprinting and natural dyeing. Theoretical and traditional background of this study is William Morris and his followers' Arts and Crafts Movement from the late 19th century to the early 20th century, which laid the philosophical as well as technical foundations of modern textile design tradition. Based on the basic understanding of the design philosophy, and starting from the design techniques of Morris and his successors, I made some experimental and systematic color plans reflecting and exploiting the physical traits and structure of jacquard woven silk material fabrics. And I applied hand silkscreen printing techniques on the jacquard silk fabrics of my own making, while testing various color combinations of natural dyes. After finishing final processing of design samples, I could get textile design products which met the criteria of my original expectation, i.e., eco-friendly and aesthetic design samples that can also be produced in automatized mass production system of contemporary textile industry. The conclusion of this experimental study is that I can expect the natural dyeing techniques, jacquard silk fabrics design techniques, silkprinting techniques, and the basic processes used in this study to be safely applied for contemporary commercial textile industry utilizing automatized silkscreen printing system and digital printing devices.

4.19 혁명과 5.16 군사정변기의 이데올로기와 복식 (Dress and Ideology during the period of 4.19 Revolution and the 5.16 Coup in the early 1960s Korea)

  • 이민정
    • 한국의류산업학회지
    • /
    • 제16권5호
    • /
    • pp.706-718
    • /
    • 2014
  • Ideology which symbolizes the belief system about the order of human society represents itself in a concrete form through dress which reflects material and conceptual world. In the early 1960s Korea, where a civil revolution and a military coup took place, good examples of dress representing ideology could be found. This study investigates the dress representing ideology of the period, and examines its manifestation and aspect of transition. Literature survey and case study were conducted. The following results were obtained: First, dress representing ideology was symbolically verifying its differences and was changing with the course of time. There were the flow going down from the government, and the flow going up from the movement of the civilian. Through this process, design elements of ideological dress were combined in a dialectic way to form a new representational dress such as Jaegunbok. Second, costly and luxurious clothes meant a tool to rule over people, and the opposition was uniform meaning equality. In 1960 Korea, black waves of school uniforms appeared to lead the social change. A year later, the military government seized power in a 5.16 coup and it enforced uniform upon every people to achieve equal austerity and modernized spirit. Lastly, cotton, which was originated from Gandhi's movement in India, was symbolizing nationalism till the early 1960s in Korea meaning the funding own development with own resources.

수치해석적 기법을 활용한 골재 도로의 콜루게이션 발생 및 진전 분석 (Numerical Analysis of the Initiation and Development of Corrugation on a Gravel Road)

  • 윤태영;정태일;신휴성
    • 한국도로학회논문집
    • /
    • 제20권1호
    • /
    • pp.9-18
    • /
    • 2018
  • PURPOSES : In this research, the initiation and development of corrugation on a gravel road with certain wheel and boundary conditions were evaluated using a coupled discrete-element method (DEM) with multibody dynamics (MBD). METHODS : In this study, 665,534 particles with a 4-mm diameter were generated and compacted to build a circular roadbed track, with a depth and width of 42 mm and 50 mm, respectively. A single wheel with a 100-mm diameter, 40-mm width, and 0.157-kg mass was considered for the track. The single wheel was set to run slowly on the track with a speed of 2.5 rad/s so that the corrugation was gradually initiated and developed without losing contact between the wheel and the roadbed. Then, the shape of the track surface was monitored, and the movement of the particles in the roadbed was tracked at certain wheel-pass numbers to evaluate the overall corrugation initiation and development mechanism. RESULTS : Two types of corrugation, long wave-length and short wave-length, were observed in the circular track. It seems that the long wave-length corrugation was developed by the longitudinal movement of surface particles in the entire track, while the short wave-length corrugation was developed by shear deformation in a local section. Properties such as particle coefficients, track bulk density, and wheel mass, have significant effects on the initiation and development of long-wave corrugation. CONCLUSIONS : It was concluded that the coupled numerical method applied in this research could be effectively used to simulate the corrugation of a gravel road and to understand the mechanism that initiates and develops corrugation. To derive a comprehensive conclusion for the corrugation development under various conditions, the driver's acceleration and deceleration with various particle gradations and wheel-configuration models should be considered in the simulation.

Numerical simulation on mining effect influenced by a normal fault and its induced effect on rock burst

  • Jiang, Jin-Quan;Wang, Pu;Jiang, Li-Shuai;Zheng, Peng-Qiang;Feng, Fan
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.337-344
    • /
    • 2018
  • The study of the mining effect influenced by a normal fault has great significance concerning the prediction and prevention of fault rock burst. According to the occurrence condition of a normal fault, the stress evolution of the working face and fault plane, the movement characteristics of overlying strata, and the law of fault slipping when the working face advances from footwall to hanging wall are studied utilizing UDEC numerical simulation. Then the inducing-mechanism of fault rock burst is revealed. Results show that in pre-mining, the in situ stress distribution of two fault walls in the fault-affected zone is notably different. When the working face mines in the footwall, the abutment stress distributes in a "double peak" pattern. The ratio of shear stress to normal stress and the fault slipping have the obvious spatial and temporal characteristics because they vary gradually from the higher layer to the lower one orderly. The variation of roof subsidence is in S-shape which includes slow deformation, violent slipping, deformation induced by the hanging wall strata rotation, and movement stability. The simulation results are verified via several engineering cases of fault rock burst. Moreover, it can provide a reference for prevention and control of rock burst in a fault-affected zone under similar conditions.

Model test on slope deformation and failure caused by transition from open-pit to underground mining

  • Zhang, Bin;Wang, Hanxun;Huang, Jie;Xu, Nengxiong
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.167-178
    • /
    • 2019
  • Open-pit (OP) and underground (UG) mining are usually used to exploit shallow and deep ore deposits, respectively. When mine deposit starts from shallow subsurface and extends to a great depth, sequential use of OP and UG mining is an efficient and economical way to maintain mining productivity. However, a transition from OP to UG mining could induce significant rock movements that cause the slope instability of the open pit. Based on Yanqianshan Iron Mine, which was in the transition from OP to UG mining, a large-scale two-dimensional (2D) model test was built according to the similar theory. Thereafter, the UG mining was carried out to mimic the process of transition from OP to UG mining to disclose the triggered rock movement as well as to assess the associated slope instability. By jointly using three-dimensional (3D) laser scanning, distributed fiber optics, and digital photogrammetry measurement, the deformations, movements and strains of the rock slope during mining were monitored. The obtained data showed that the transition from OP to UG mining led to significant slope movements and deformations that can trigger catastrophic slope failure. The progressive movement of the slope could be divided into three stages: onset of micro-fracture, propagation of tensile cracks, and the overturning and/or sliding of slopes. The failure mode depended on the orientation of structural joints of the rock mass as well as the formation of tension cracks. This study also proved that these non-contact monitoring technologies were valid methods to acquire the interior strain and external deformation with high precision.

Field investigation and numerical study of ground movement due to pipe pile wall installation in reclaimed land

  • Hu Lu;Rui-Wang Yu;Chao Shi;Wei-Wei Pei
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.397-408
    • /
    • 2023
  • Pipe pile walls are commonly used as retaining structures for excavation projects, particularly in densely populated coastal cities such as Hong Kong. Pipe pile walls are preferred in reclaimed land due to their cost-effectiveness and convenience for installation. However, the pre-bored piling techniques used to install pipe piles can cause significant ground disturbance, posing risks to nearby sensitive structures. This study reports a well-documented case history in a reclamation site, and it was found that pipe piling could induce ground settlement of up to 100 mm. Statutory design submissions in Hong Kong typically specify a ground settlement alarm level of 10 mm, which is significantly lower than the actual settlement observed in this study. In addition, lateral soil movement of approximately 70 mm was detected in the marine deposit. The lateral soil displacement in the marine deposit was found to be up to 3.4 and 3.1 times that of sand fill and CDG, respectively, mainly due to the relatively low stiffness of the marine deposit. Based on the monitoring data and site-investigation data, a 3D numerical analysis was established to back-analyze soil movements due to the installation of the pipe pile wall. The comparison between measured and computed results indicates that the equivalent ground loss ratio is 20%, 40%, and 20% for the fill, marine deposit and CDG, respectively. The maximum ground settlement increases with an increase in the ground loss ratio of the marine deposit, whereas the associated influence radius remains stationary at 1.2 times the pipe pile wall depth (H). The maximum ground settlement increases rapidly when the thickness of marine deposit is less than 0.32H, particularly for the ground loss ratio of larger than 40%. This study provides new insights into the pipe piling construction in reclamation sites.

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

수치해석적 방법을 이용한 비등온 고농도 연무의 배기량 산정에 관한 연구 (The Numerical Study on the Ventilation of Non-isothermal Concentrated Fume)

  • 임석채;장혁상;하지수
    • 대한환경공학회지
    • /
    • 제30권5호
    • /
    • pp.534-543
    • /
    • 2008
  • 연무거동을 해석하는 방법 중에서 실물을 이용한 실험방법이 가장 믿을 수 있는 자료를 제공하지만 여러 가지 제한사항들로 인해 축소모델실험을 이용한 상사방법이나 CFD(computational fluid dynamics)를 이용한 수치해석적 방법이 대안으로 채택되고 있다. 본 연구는 연무거동을 수치해석적 방법으로 예측하여 연층의 높이에 따른 배기량을 산정하고자 했다. 수치해석에 사용된 격자는 축소실험에서 사용된 모델 A, B와 동일한 크기 및 형상을 가진다. 배기량은 수치해석으로 예측된 연소생성물들의 몰비를 이용하여 연층의 높이를 예측하고 그때의 배기가스 온도 및 유속으로 산정되었다. 수치해석 결과, 벽면 열손실 및 복사효과를 고려하여 예측된 배기량이 축소모델 실험결과의 표준편차 범위 내에 존재하였지만 에너지 방출량이 증가할수록 예측된 연무의 온도가 실험과 많은 차이를 보였고 비교적 열손실에 의한 영향이 적은 모델 B를 이용한 계산결과에서는 연무의 거동이 실험결과와 유사한 패턴을 가지는 것으로 나타났다. 따라서 열손실을 보정할 적절한 보정계수를 구할 수 있다면 배기량 산정에 관한 다양한 후속연구를 수치해석적 방법을 이용해 진행할 수 있을 것이라 사료된다.