• Title/Summary/Keyword: City Gas

Search Result 568, Processing Time 0.027 seconds

The Impact of COVID-19 on Stock Price: An Application of Event Study Method in Vietnam

  • PHUONG, Lai Cao Mai
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.523-531
    • /
    • 2021
  • Vietnam's Oil and gas industry make a significant contribution to the Gross Domestic Product of Vietnam. The ongoing COVID-19 pandemic has hit every industry hard, but perhaps the one industry which has taken the biggest hit is the global oil and gas industry. The purpose of this article is to examine how the COVID-19 pandemic affects the share price of the Vietnam Oil and Gas industry. The event study method applied to Oil and Gas industry index data around three event days includes: (i) The date Vietnam recognized the first patient to be COVID-19 positive was January 23, 2020; (ii) The second outbreak of COVID-19 infection in the community began on March 6, 2020; (iii) The date (30/3/2020) when Vietnam announced the COVID-19 epidemic in the whole territory. This study found that the share price of the Vietnam Oil and Gas industry responded positively after the event (iii) which is manifested by the cumulative abnormal return of CAR (0; 3] = 3.8% and statistically significant at 5 %. In the study, event (ii) has the most negative and strong impact on Oil and Gas stock prices. Events (i) favor negative effects, events (iii) favor positive effects, but abnormal return change sign quickly from positive to negative after the event date and statistically significant shows the change on investors' psychology.

The effect of geometrical parameters on the radon emanation coefficient and different radon parameters

  • Entesar H. El-Araby;A. Azazi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4096-4101
    • /
    • 2023
  • Radon is a radioactive gas produced from the uranium-238 series. Radon gas affects public health and is the second cause of lung cancer. The study samples were collected from one area of the city of Jazan, southwest of the Kingdom of Saudi Arabia. The influence of engineering and physical parameters on the emanation coefficient of gas and other gas parameters was studied. Parameters for radon were measured using a CR-39 Solid-State Nuclear Track Detector (SSNTD) through a sealed emission container. The results showed that the emanation coefficient was affected directly by the change in the grain size of the soil. All parameters of measured radon gas have the same behavior as the emanation coefficient. The relationship between particle size and emanation coefficient showed a good correlation. The values of the emanation coefficient were inversely affected by the mass of the sample, and the rest of the parameters showed an inverse behavior. The results showed that increasing the volume of the container increases the accumulation of radon sons on the wall of the container, which increases the emission factor. The rest of the parameters of radon gas showed an inverse behavior with increasing container size. The results concluded that changing the engineering and physical parameters has a significant impact on both the emanation coefficient and all radon parameters. The emanation coefficient affects the values of the radiation dose of an alpha particle.

Thermal and Electrical Energy Mix Optimization(EMO) Method for Real Large-scaled Residential Town Plan

  • Kang, Cha-Nyeong;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.513-520
    • /
    • 2018
  • Since Paris Climate Change Conference in 2015, many policies to reduce the emission of greenhouse gas have been accelerating, which are mainly related to renewable energy resources and micro-grid. Presently, the technology development and demonstration projects are mostly focused on diversifying the power resources by adding wind turbine, photo-voltaic and battery storage system in the island-type small micro-grid. It is expected that the large-scaled micro-grid projects based on the regional district and town/complex city, e.g. the block type micro-grid project in Daegu national industrial complex will proceed in the near future. In this case, the economic cost or the carbon emission can be optimized by the efficient operation of energy mix and the appropriate construction of electric and heat supplying facilities such as cogeneration, renewable energy resources, BESS, thermal storage and the existing heat and electricity supplying networks. However, when planning a large residential town or city, the concrete plan of the energy infrastructure has not been established until the construction plan stage and provided by the individual energy suppliers of water, heat, electricity and gas. So, it is difficult to build the efficient energy portfolio considering the characteristics of town or city. This paper introduces an energy mix optimization(EMO) method to determine the optimal capacity of thermal and electric resources which can be applied in the design stage of the real large-scaled residential town or city, and examines the feasibility of the proposed method by applying the real heat and electricity demand data of large-scale residential towns with thousands of households and by comparing the result of HOMER simulation developed by National Renewable Energy Laboratory(NREL).

A Study on the Environmental Carrying Capacity Assessment of Chongju City (도시 환경용량평가에 관한 연구 -청주시를 사례로-)

  • Lim, Jae-Ho;Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.1
    • /
    • pp.25-36
    • /
    • 2002
  • The purpose of this study is to assess the environmental carrying capacity of Chongju City for the environmental management and the urban growth management. The urban environmental carrying capacity assessment of the city by the index of ecological footprint(EF), shows that the ecosystem of the city has been overloaded and most of the deficiencies has come from outside of the city. The EF index, the area of land per capita required for production and consumption in the city, was 1.731 ha per capita in 1989 and 1.901 ha per capita in 1999. On the other side, the ecologically productive land is 0.0175 ha per capita. It means that every citizen owes 1.88 ha per capita to the ecosystem in 1999. The land consumption of the city has increased by 0.1705 ha per capita during the last 10 years. The capacity of infrastructure and the service supply estimated by the Onishi model does not exceed the demand of the city in 1999. But the rapidly increasing population and fast urban growth need the expansion of the capacity. The water supply capacity of the city appears to be sufficient in 1999, but the water supply demand will increase in the future. The capacity of sewage treatment facilities seems to be sufficient, but the higher level of sewage treatment facilities should be adopted for the improvement of water quality as the generation of sewage will increase and its characteristics will also make the wastewater treatment difficult. Due to the decrease of solid waste generated, the land fill capacity for solid waste disposal is not insufficient at present, but the capacity will be saturated in the near future. Therefore, the scientific management system of solid wastes should be introduced. The air quality of the city meets both the national air quality standard and WHO recommendation standard, but the strong regulation and control of automobile emission gas such as CO, $CO_2$, NOx and HC is required for clean air.

A Study on SPI(soil pollution index) in City Land

  • Kim, Young-Sik;Kim, Gi-Sun;Song, Mi-Ra
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.502-505
    • /
    • 2007
  • To estimate the soil quality of Miryang area, soil analysis were conducted according to the city and out of city of soil expenses at according to analysis components and heavy metal pollution of irradiation sampling sites. The through soil components the principal element about the 71% $SiO_2\;and\;Al_2O_3$, the pH of field area near the city center was lower than that of the other field area, which indicated that this acidification was probably attributed to the acid rain caused by the traffic exhaust gas such as $SO_x\;and\;NO_x$. Acidification was more severe in the field area than in the farming land. The concentration of five heavy metals such as Cu, Cd, Pb, As and Cr were found to be lower than the standard of soil pollution. An assessment using the SPI(Soil Pollution Index), which was developed to estimate an overall soil quality, was performed. Each SPS(Soil Pollution Score) were evaluated with the results of the data from this study. The soil quality of most area of Miryang land was determined to Class 1, which indicated that the soil was healthy.

PV Power Prediction Models for City Energy Management System based on Weather Forecast Information (기상정보를 활용한 도시규모-EMS용 태양광 발전량 예측모델)

  • Eum, Ji-Young;Choi, Hyeong-Jin;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.393-398
    • /
    • 2015
  • City or Community-scale Energy Management System(CEMS) is used to reduce the total energy consumed in the city by arranging the energy resources efficiently at the planning stage and controlling them economically at the operating stage. Of the operational functions of the CEMS, generation forecasting of renewable energy resources is an essential feature for the effective supply scheduling. This is because it can develop daily operating schedules of controllable generators in the city (e.g. diesel turbine, micro-gas turbine, ESS, CHP and so on) in order to minimize the inflow of the external power supply system, considering the amount of power generated by the uncontrollable renewable energy resources. This paper is written to introduce numerical models for photo-voltaic power generation prediction based on the weather forecasting information. Unlike the conventional methods using the average radiation or average utilization rate, the proposed models are developed for CEMS applications using the realtime weather forecast information provided by the National Weather Service.

A Model of Location Decisions of Natural Gas Filling Station Considering Spatial Coverage and Travel Cost (공간적 접근성 및 통행비용을 고려한 천연가스 충전소 최적 입지선정 모형)

  • Yu, Jeong-Whon;Lee, Mu-Young;Oh, Sei-Chang
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.145-153
    • /
    • 2008
  • This study proposes a facility location model in consideration of spatial coverage and travel cost as an effort to make objective and effective decisions of natural gas filling stations. The proposed model is developed for fixed stations and consists of two stages. The first stage employs a heuristic algorithm to find a set of locations which satisfy the spatial coverage constraints determined by the maximum travel distance between the filling stations and bus depots. In the second stage, the optimal location of filling stations is determined based on the minimum travel cost estimated by using a modified transportation problem as well as the construction and maintenance costs of the filling stations. The applicability of the model is analyzed through finding the optimal location of filling stations for the city of Anyang, a typical medium-sized city in metropolitan Seoul, based on the demand of natural gas buses. This study is expected to help promote the spread of natural gas buses by providing a starting point of a objective and reasonable methodological perspective to address the filling station location problem.

Evaluation of Green House Gases by Transportation Using Traffic Census Results from Changwon City (창원시 실제 교통량 자료를 이용한 도로수송부문 온실가스 배출량 평가)

  • Oh, Il-Hwan;Lee, Seung-Hoon;Cheong, Jang-Pyo;Kim, Tae-Hyeung;Seo, Jeoung-Yoon
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.747-754
    • /
    • 2009
  • In this study, which aims to estimate the volume of greenhouse gas emitted by road transportation vehicles in Changwon City, the emission rate was calculated on the basis of the actual traffic volume measured at major crossroads and compared with the results obtained from the methodology used to estimate the greenhouse gas emissions of road transportation provided in the IPCC 2006 GL guidelines (Tier 1, Tier 3). Analysis of the results of the comparison showed that the Tier 1 methodology, which was applied in the estimation of the rate of greenhouse gas emissions, carries a high probability of underestimation, while the Tier 3 methodology carries a relatively high probability of overestimation. Therefore, when considering the assignment of permissible rates of emission to local governments, the application of the methodology, i.e. whether one uses Tier 1 or Tier 3, may result in a large difference in the rate of allowable emissions. It is suggested that a method based on the actual volume of traffic would be the most reasonable one with regard to the development of a realistic plan.

A Study on Pipeline Network Analysis for Predicting Pressure and Flow rate Transients in City-gas Supply Lines (도시가스 공급라인의 압력 및 유량변화 예측을 위한 배관망 해석 연구)

  • Nam, Jin-Hyun;Cho, Chan-Young;Jang, Sung-Pill;Lim, Si-Hyung;Shin, Dong-Hoon;Chung, Tae-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 2008
  • The deviation of measured pressures in pipeline networks from normal or reference pressures is useful information for judging the operation of the pipeline networks. A cost-effective monitoring of pipeline networks including a leak detection capability can be realized when transient pressure variation is accurately predicted using measured conditions at supply- and demand-sides of the networks. In this study, a pipeline network analysis program was developed based on one-dimensional flow equations for compressible fluids. The validity of the present analysis was demonstrated by simulating the flow in a straight pipeline and comparing the results with the previously reported ones. Pressure and flow rate transients in several simple city-gas pipeline networks were also analyzed to show the usefulness of the developed program.

  • PDF

A Study on Cathodic Protection Rectifier Control of City Gas Pipes using Deep Learning (딥러닝을 활용한 도시가스배관의 전기방식(Cathodic Protection) 정류기 제어에 관한 연구)

  • Hyung-Min Lee;Gun-Tek Lim;Guy-Sun Cho
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.49-56
    • /
    • 2023
  • As AI (Artificial Intelligence)-related technologies are highly developed due to the 4th industrial revolution, cases of applying AI in various fields are increasing. The main reason is that there are practical limits to direct processing and analysis of exponentially increasing data as information and communication technology develops, and the risk of human error can be reduced by applying new technologies. In this study, after collecting the data received from the 'remote potential measurement terminal (T/B, Test Box)' and the output of the 'remote rectifier' at that time, AI was trained. AI learning data was obtained through data augmentation through regression analysis of the initially collected data, and the learning model applied the value-based Q-Learning model among deep reinforcement learning (DRL) algorithms. did The AI that has completed data learning is put into the actual city gas supply area, and based on the received remote T/B data, it is verified that the AI responds appropriately, and through this, AI can be used as a suitable means for electricity management in the future. want to verify.