• Title/Summary/Keyword: Citrobactor sp.

Search Result 2, Processing Time 0.018 seconds

Isolation and Characterization of Citrobacter sp. Mutants Defective in Decolorization of Crystal Violet (Crystal vilet 색소분해능이 소실된 Citrobacter sp. 의 분리 및 특성)

  • Kim, Ji-Yoon;Kim, Kyung-Woon;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.333-339
    • /
    • 2000
  • To identify genes involved in the decolorization of crystal violet, we isolated random mutants generated by transponson insertion in crystal violet-declorizing bacterium, Citrobacter sp. The resulting mutant bank yielded mutants with six distinct phenotypes, and Southern hybridization with a Tn5 fragment as a probe showed a single hybridized with six distinct phenotypes, and Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in the mutants Ctg 2, 5 an 6, whereas two and three bands were detected in Ctg1, 4 and 3, respectively. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. From comparison with a sequence database, putative protein product encoded by ctg 5 was identified as E. coli maltose transproter(Mal G) homolog, whereas the deduced amino acid sequence of the other ctg genes did not show any significant similarity with any DNA or protein sequency. Therefore, these results indicate that the other ctg genes except ctg 5 encode new proteins responsible for decolorization of crystal violet.

  • PDF

Isolation of Citrobacter sp. Mutants Defective in Decolorization of Brilliant Green by Transposon Mutagenesis

  • Jang, Moon-Sun;Lee, Young-Mi;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.139-142
    • /
    • 2004
  • To identify genes involved in the decolorization of brilliant green, we isolated random mutants generated by transposon insertion in brilliant green-decolorizing bacterium, Citrobacter sp. The resulting mutant bank yielded 19 mutants with a complete defect in terms of the brilliant green color removing ability. Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in 7 mutants and these mutants appeared to have insertions at different sites of the chromosome. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. By comparing these with a sequence database, putative protein products encoded by bg genes were identified as follows: bg 3 as a LysR-type regulatory protein; bg 11 as a MalG protein in the maltose transport system; bg 14 as an oxidoreductase; and bg 17 as an ABC transporter. The sequences deduced from the three bg genes, bg 2, bg 7 and bg 16, showed no significant similarity to any protein with a known function, suggesting that these three bg genes may encode unidentified proteins responsible for the decolorization of brilliant green.