• 제목/요약/키워드: Circumferential Stress

검색결과 222건 처리시간 0.032초

원전 증기발생기 전열관의 확관방법에 따른 응력부식균열 저항성 연구 (A Study on the Resistance of Stress Corrosion Cracking due to Expansion Methods for Steam Generator Tubes in Nuclear Power Plants)

  • 김용규;송명호
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.149-157
    • /
    • 2014
  • 원자력발전소의 증기발생기 전열관은 가동 중에 다양한 형태의 부식 손상이 발생한다. 전열관의 외면에 발생하는 응력부식균열은 2차측 응력부식균열이라 불리는데 주로 전열관의 확관천이지역에서 발생한다. 그 원인은 이 지역의 기하학적 특성과 관련된 슬러지의 침적에 의한 불순물의 농축과 증기 발생기 제작과정에서 확관에 의한 잔류응력이다. 특히 잔류응력은 확관방법에 따라 방향성 및 그 크기가 달라지는데 전열관에 발생하는 균열의 방향 및 발생빈도는 이와 관련이 있다. 현장 경험에 따르면, 폭발확관된 전열관은 수압확관된 전열관에 비해 확관천이 부위에서 원주방향 균열이 잘 발생하는 것으로 나타났다. 따라서 본 연구에서는 예민화된 증기발생기 전열관에 대한 응력부식균열 시험을 통해 확관법에 따른 특정방향 균열의 발생빈도 및 균열 크기를 비교하였다. 또한 균열이 발생된 전열관의 파단면 검사를 통해 균열 양상과 수화학 환경 중의 특정 성분의 영향을 관찰하였다.

천연가스 수송용 API 5L X65 배관에 대한 소성붕괴해 (Plastic Collapse Solution for API 5L X65 Natural Gas Linepipe)

  • 김우식;심도준;최재붕;백종현
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1483-1491
    • /
    • 2004
  • To assess the integrity of the pipeline is the most important problem to be solved first of all for prevention of any fracture accident of the pipeline. As a result of exerting such efforts, a number of plastic collapse assessment equations have been suggested, however, the scope of using or applying such assessment equations has not been exactly defined. In this study, the case that a surface crack existed in the circumferential direction in the external side of the natural gas pipeline and a bending load was applied to the pipeline was analytically identified as the most critical condition, and a plastic collapse assessment equation fur it was suggested. The flow stress of the API X65 linepipe was defined through the experiment conducted on SENT specimens. Also, a local assessing criterion of a 3-dimensional crack behavior considering not only the crack depth but also the crack length was suggested. Finally, a plastic collapse assessment equation for the API X65 linepipe was developed by performing the 3-dimensional finite element analysis.

Effect of Internal Flow in Symmetric and Asymmetric Micro Regenerative Pump Impellers on Their Pressure Performance

  • Horiguchi, Hironori;Matsumoto, Shinji;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.72-79
    • /
    • 2009
  • The effect of symmetric and asymmetric micro regenerative pump impellers on their pressure performance was studied. The shut off head of the pump with the symmetric impeller was about 2.5 times as that with the asymmetric impeller. The computation of the internal flow was performed to clarify the cause of the increase of the head. It was found that the contribution of the angular momentum supply was larger than that of shear stress for the head development in both cases. The larger head and momentum supply in the case of the symmetric impeller were caused by larger recirculated flow rate and larger angular momentum difference between the inlet and outlet to the impeller. The larger recirculated flow rate was caused by smaller pressure gradient in the direction of recirculated flow. The decrease of the circumferential velocity in the casing was attributed to the smaller local flow rate in the casing.

볼 베어링용 고무시일의 접촉력 해석에 관한 연구 (A Study on the Contact Force of Rubber Seals for Ball Bearings)

  • 김청균;전인기;최인혁
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2261-2267
    • /
    • 1992
  • 본 연구에서는 시일 립의 간섭량과 접촉력에 관련된 이론적 연구를 수행한다. 시일의 접촉면에서 축방향 접촉력이 크게 설계되면 시일 립 선단에서는 마찰과 마멸이 심하게 진행되어 시일수명을 크게 단출시킬 우려가 있고, 접촉력이 작으면 밀봉된 유 체의 누설유려가 증가되면서 볼과 레이스사이의 윤활상태를 나쁘게 하여 베어링 수명 을 크게 단축하는 결과를 초래하게 되므로 시일 립의 접촉력에 관련된 연구는 대단히 중요하다.

Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression

  • Wang, Jun;Liu, Weiqing;Zhou, Ding;Zhu, Lu;Fang, Hai
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.431-452
    • /
    • 2014
  • The present study focuses on the mechanical behaviour of concrete filled double skin steel tubular (CFDST) stub columns confined by fiber reinforced polymer (FRP). A series of axial compression tests have been conducted on two CFDST stub columns, eight CFDST stub columns confined by FRP and a concrete-filled steel tubular (CFST) stub column confined by FRP, respectively. The influences of hollow section ratio, FRP wall thickness and fibre longitudinal-circumferential proportion on the load-strain curve and the concrete stress-strain curve for stub columns with annular section were discussed. The test results displayed that the FRP jacket can obviously enhance the carrying capacity of stub columns. Based on the test results, a new model which includes the effects of confinement factor, hollow section ratio and lateral confining pressure of the outer steel tube was proposed to calculate the compressive strength of confined concrete. Using the present concrete strength model, the formula to predict the carrying capacity of CFDST stub columns confined by FRP was derived. The theoretically predicted results agree well with those obtained from the experiments and FE analysis. The present method is also adapted to calculate the carrying capacity of CFST stub columns confined by FRP.

세립 사질토 지반에 설치된 석션 앵커의 수평 지지력 (Capacity of Horizontally Loaded Suction Anchor Installed in Silty Sand)

  • 김수린;추연욱;김동수;성홍근
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.59-66
    • /
    • 2013
  • A suction anchor is one of the most popular anchors for deepsea floating systems. An anchor used for catenary mooring is predominantly under a horizontal load. In this study, the behavior of a suction anchor installed in cohesionless soil was investigated when the anchor was mainly subjected to a horizontal load induced by a catenary line. In order to study the behavior of the suction anchor, 3D FEM analysis models were developed and analyzed. Depending on the location of the load (padeye), the ultimate horizontal load was monitored. The distributions of the reaction forces around the anchor induced by the seabed were analyzed using the circumferential stress to understand the behavior of the suction anchor under a horizontal load.

형상변화 에 의한 열교환기 의 열전달 성능 향상 (II) (The Improvement of the Heat Exchanger Performance by Shape Modifieation(II))

  • 노승탁;이택식;강신형;이은현;송명호
    • 대한기계학회논문집
    • /
    • 제9권2호
    • /
    • pp.202-212
    • /
    • 1985
  • 본 논문에서는 이러한 연구의 첫단계로 Gosman과 Ideriah가 다룬 TEACH-2E전 산프로그램을 모체로 하여 본 논문의 문제에 적합하도록 수정하여 사용하였다. 그러 나 기본적인 k-.epsilon.난류모델은 수정하지 않았다. 한편, 본 논문에서는 열선풍속계를 이용하여 평균 속도분포 및 난류특성을 계측하고 계산결과와 비교하였다. 이를 통하 여 표준형 k-.epsilon.모델을 이용한 TEACH-2E코드의 특성을 파악하고 이를 위한 실험 데이터 를 확보하는데 중점을 두었다.

원형 단면을 갖는 180° 굽은 곡관내 발달하는 난류유동에 관한 수치해석 (Numerical Simulation of Developing Turbulent Flow in a Circular Pipe of 180° Bend)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.966-972
    • /
    • 2006
  • A numerical simulation is performed fur developing turbulent flow in a strongly curved 180 deg pipe and its downstream tangent by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. The governing equations are discretized as the full elliptic from of the equations of motion. Three typical two-equation turbulence models of low-Reynolds-number form are used to approximate the turbulent stress field. Solutions fur both streamwise and circumferential velocity components are compared with the experimental data by Azzola et at.(1986). The ${\kappa}-{\omega}$ model by Wilcox(1988) is found to give better prediction performance than the other two. Predicted secondary velocities and streamwise velocity component contours at sequential longitudinal stations are also presented in order to enable a detailed description of the complete flow. It is also found that, in the bend both mean streamwise and secondary velocities never achieve a fully-developed state and the code is capable of producing very well the complex nature of steady flow in a strongly curved pipe.

경사진 기계평면시일의 변형거동 특성 해석 (Analysis characters of distortion of inclined mechanical face seal)

  • 조승현;고영배;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.341-349
    • /
    • 2001
  • Heat distortion of the non-contacting mechanical face seal is affected by friction heat between primary seal and seal sheet. The fluid or gas in mechanical face seal maintains operating gap, cooling friction heat and lubricates at the face of seal. So we designed face of seal for inclined face. inclined face of seal improves fluid or gas flow at the face of seal and it increases circumferential velocity at outer radius of the seal so temperature of the seal is decreased by low heat transfer coefficient at there. In this paper, inclined face seal are analysed numerically using finite element method for proof improve inclined face seal performance. Angle of the incline face used for FEA is from 50$^{\circ}$to 90$^{\circ}$and for explaining the effects of inclined face in seal, we get temperature, face distortion, and stress in the seal with variable operating gap and rotating speeds. Result of analysis shows that angle of the incline face is 60$^{\circ}$come to good thermal distortion characteristics.

  • PDF

회전하는 얇은 링의 고유진동 해석을 위한 모델링 (Modeling for the Natural Vibration Analysis of a Rotating Thin Ring)

  • 김창부;김세희
    • 한국소음진동공학회논문집
    • /
    • 제16권1호
    • /
    • pp.57-65
    • /
    • 2006
  • In this paper, we present the principle of virtual work, from which the exact non-linear equations of motion of a rotating ring can be derived, by using the theory of finite deformation. For a thin ring of which the effect of variation in curvature across the cross-section is neglected, the radial displacement and the extensional stress are determined from the principle of virtual work at the steady state where the ring is rotating with a constant angular velocity. And also we formulate systematically the governing equations concerned to the in-plane vibrations and the out-of-plane vibrations at the disturbed state by using the principle of virtual work which is expressed with the disturbed displacements about the steady state. The formulated governing equations are classified by four models along the cases of considering or neglecting all or partly the secondary effects of flexural shear, rotary inertia, circumferential extension, and twist inertia. The natural vibrations of thin rings are analyzed, and its results are compared and discussed.