• Title/Summary/Keyword: Circulation water channel (CWC)

Search Result 9, Processing Time 0.019 seconds

Ocean Current Power Farm Interaction Study (해양 조류발전단지 간섭 연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Chae, Kwang-Su;Park, Ro-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.109-113
    • /
    • 2009
  • Several tidal current power plants are being planned and constructed in Korea utilizing the strong tidal currents along the west and south coasts. A tidal current reaches 9.7 m on the west coast; there are few potential regions for tidal current power generation. The construction of a dam to store water can prevent the circulation of water, causing a great environmental impact on the coast and estuary. The tidal barrage could produce a large amount of power, but it should be carefully considered. The purpose of developing renewable energies is to minimize the environmental impact and to maximize the utilization of clean energy. To produce a great quantity of power, tidal current farms require the placement of numerous units in the ocean. The power generation is very dependent on the size of the rotor and the incoming flow velocity. Also, the interactions between devices contribute greatly to the production of power. The efficiency of a power farm is estimated to determine the production rate. This paper introduces 3 D interaction problems between rotating rotors, considering the axial, transverse, and diagonal distances between horizontal axis tidal current devices.

Measurement of Velocity Field Around Hydrofoil of Finite Span with Shallow Submergence (몰수 심도가 작은 고속 수중익 주위의 속도장 측정)

  • Kim, Deok-Ho;Lee, Jeong-Moo;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.80-87
    • /
    • 2005
  • A set of experiments was carried out for obtaining the velocity field around the hydrofoil of finite span, using a wing of the NACA 0012 section in a circulating water channel. DPIV technique was used to measure the velocity field, and the velocity measurements along the span were done for 3 speeds, 3 submerged depths, and 4 angles of attack. Experimental data are compared with the theoretical assumptions, as well as the numerical findings by Lee and Lee(2004). Special care is given to the flow near the tips and in the region close to the leading edge. Though indirect, using the measured data of the velocity, it is now possible to compare the aerodynamic and the hydrodynamic strength of the circulation distribution of a wing in the framework of the lifting-line theory.

Numerical Analysis of HAT Tidal Current Rotors (수평축 조류발전로터 성능실험의 수치적 재현과 연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.620-623
    • /
    • 2009
  • 여러 해양에너지 중 유체의 빠른 흐름을 이용하는 조류발전은 서해안과 남해안에 적용하기에 적합하며 해양환경의 영향을 최소화 하면서 많은 에너지를 연속적으로 생산할 수 있는 장점이 있다. 조류발전에서 1차적으로 에너지를 변환시키는 로터는 조류발전시스템의 주요한 장치중의 하나로 여러 변수에 의해 그 성능이 결정된다. 블래이드 수, 형상, 단면적, 허브, 직경 등 여러 요소를 고려하여 로터를 설계하며, 설계정보와 실험데이터를 바탕으로 수치모델을 구현하여 실험에서 직접 계측할 수 없는 로터 주변의 유체현상 및 간섭영향 등을 예측할 수 있다. 본 논문에서는 변화하는 유속에 따른 HAT 로터의 시동속도, 회전수를 측정하여 로터 형상과 허브-직경비가 다른 로터의 성능을 고찰하고, 이를 수치모델로 구현하여 로터주변 유동변화를 연구하였다.

  • PDF

The Optimum Design and Wake Analysis of Tidal Current Power Turbine (조류발전 터빈 최적화 설계 및 후류 영향 연구)

  • Jo, Chulhee;Kim, Doyoub;Lee, Kanghee;Rho, Yuho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.164.2-164.2
    • /
    • 2011
  • 지구온난화에 따른 대체에너지 자원확보가 국가적으로 중요한 과제로 대두되고 있고 여러 대체에너지원 중 국내의 해양에너지는 잠재량이 매우 높다. 여러 해양에너지 중에서 빠른 흐름을 이용하는 조류발전은 서해안과 남해안에 적용하기에 적합하며 해양환경을 보존하면서 많은 에너지를 생산할 수 있는 장점이 있다. 조류발전에서 1차적으로 에너지를 변환시키는 로터는 주요한 장치중의 하나로 여러 변수에 의해 그 성능이 결정된다. 로터의 블레이드 수, 형상, 단면적, 허브, 직경 등 여러 요소를 고려하여 설계되어야 한다. 또한 조류발전을 적용하는 해양환경에서 최대 출력을 생산할 수 있는 로터가 적용될 수 있도록 블레이드의 후류 영향을 고려해야한다. 본 논문에서는 날개요소이론을 바탕으로 수평축 조류발전 터빈을 설계하여 실험 및 유동해석을 통해 성능을 평가하고, 후류에 미치는 영향을 분석하였다.

  • PDF

Hull form development of the high speed small fishing boat (고속 소형 어선의 기본선행 개발)

  • Lee, Kwi-Joo;Joa, Soon-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • This study is concerned with the development of the basic planing hull form of small fishing boat in 25 knots high speed. A series of model test to determine the optimum performance hull form of actual fishing boat with 10 gross tonnage was carried out for 5 models made available planing hull form in the circulation water channel. Model test was performed with the resistance test to study the hydrodynamic characteristics of model ships and the sinkage and trim measurement to investigate the stability of model ships and also the wave pattern observation to analyze the effectiveness of model ships. As the result, the planing hull form of P-4 with deep V type bow can be derived as the best hull form with good performance especially in ship's resistance efficiency showing less residual resistance and sinkage and trim and the spray effect, etc..

HAT Tidal Current Rotor Performance as per various Design Parameter (조류발전 로터 설계변수에 따른 성능 검토)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. This paper introduces the experiment of rotor performance and also the effect of design parameter on the performance of HAT rotor by CFD.

  • PDF

Design of Horizontal Axis Tidal Current Power Turbine with Wake Analysis (수평축 조류발전 터빈 설계 및 후류 특성 분석)

  • Jo, Chul-Hee;Kim, Do-Youb;Lee, Kang-Hee;Rho, Yu-Ho;Kim, Kook-Hyun
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.92-100
    • /
    • 2011
  • With the increased demand of clean energy and global warming measures, the renewable energy development has been increased recently. The TCP (Tidal Current Power) is one of the ocean renewable energy sources. Having the high tidal energy source in Korea, there are many potential TCP sites with strong current speed. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system. The rotor performance is determined by various design parameters including number of blades, shape, sectional size, diameters and etc. However, the interactions between devices also contribute significantly to the energy production. The rotor performance considering the interaction needs to be investigated to predict the exact power in the farm. This paper introduces the optimum design of TCP turbine and the performance of devices considering the interference between rotors.

Performance of a Horizontal-axis Turbine Based on the Direction of Current Flow (수평축 조류발전 로터의 유향변화에 따른 효율 고찰)

  • Jo, Chul-Hee;Park, Ro-Sik;Yim, Jin-Young;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.8-12
    • /
    • 2010
  • The use of a tidal-current power system is one source of renewable energy that can minimize the environmental impact of power production and offer many other advantages compared to conventional energy sources. Unlike other energy production approaches, rate of energy production can be precisely predicted and the operational rate is very high. The performance of the rotor, which has a vital role in energy production using tidal currents, is determined by various design factors, and it should be optimized for the specific ocean environment in the field. The horizontal-axis turbine is very sensitive to the direction of flow, and flow direction changes due to rise and fall of the tides. To investigate the performance of the rotor considering the interaction problems with incidence angle of flow, a series of experiments were conducted, and a 3D CFD model was designed and analyzed by ANSYS CFX. The results and findings are summarized in the paper.

Fundamental Study on the HAT Tidal Current Power Rotor Performance by CFD (CFD를 이용한 수평축 조류발전 로터 성능의 기초연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.3-8
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. The paper introduces the experiment of rotor performance and also the fundamental study on the characteristics of three different rotors and flow near the rotor by CFD.

  • PDF