• Title/Summary/Keyword: Circulation Rate

Search Result 727, Processing Time 0.029 seconds

Solid Circulation Rate in a 3-phase (gas/liquid/solid) Viscous Circulating Fluidized Bed

  • Jang, Hyung Ryun;Yoon, Hyuen Min;Yang, Si Woo;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.186-190
    • /
    • 2018
  • For the first time, the characteristics of solid circulation rate ($G_S$) were investigated in a three-phase (gas-liquid-solid) viscous circulating fluidized bed (TPCFB). The solid circulation rate was controlled separately by adjusting the experimental apparatus as well as operating variables. Effects of primary and secondary liquid velocities ($U_{L1}$ and $U_{L2}$), gas velocity ($U_G$), particle size ($d_p$), height of particles piled up in the solid recycle device (h), and viscosity of continuous liquid media (${\mu}_L$) on the value of $G_S$ were determined. The experimental results showed that the value of $G_S$ increased with increases in the values of $U_{L1}$, $U_{L2}$, h and ${\mu}_L$, while it decreased with increasing $U_G$ and $d_p$ in TPCFBs with viscous liquid media. The values of $G_S$ were well correlated in terms of dimensionless groups within this experimental conditions.

Experimental and numerical investigations on effect of reverse flow on transient from forced circulation to natural circulation

  • Li, Mingrui;Chen, Wenzhen;Hao, Jianli;Li, Weitong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1955-1962
    • /
    • 2020
  • In a sudden shutdown of primary pump or coolant loss accident in a marine nuclear power plant, the primary flow decreases rapidly in a transition process from forced circulation (FC) to natural circulation (NC), and the lower flow enters the steam generator (SG) causing reverse flow in the U-tube. This can significantly compromise the safety of nuclear power plants. Based on the marine natural circulation steam generator (NCSG), an experimental loop is constructed to study the characteristics of reverse flow under middle-temperature and middle-pressure conditions. The transition from FC to NC is simulated experimentally, and the characteristics of SG reverse flow are studied. On this basis, the experimental loop is numerically modeled using RELAP5/MOD3.3 code for system analysis, and the accuracy of the model is verified according to the experimental data. The influence of the flow variation rate on the reverse flow phenomenon and flow distribution is investigated. The experimental and numerical results show that in comparison with the case of adjusting the mass flow discontinuously, the number of reverse flow tubes increases significantly during the transition from FC to NC, and the reverse flow has a more severe impact on the operating characteristics of the SG. With the increase of flow variation rate, the reverse flow is less likely to occur. The mass flow in the reverse flow U-tubes increases at first and then decreases. When the system is approximately stable, the reverse flow is slightly lower than obverse flow in the same U-tube, while the flow in the obverse flow U-tube increases.

Solid Circulation Characteristics of Two Oxygen Carriers for Chemical Looping Combustion System (케미컬루핑 연소시스템을 위한 두 가지 산소전달입자들의 고체순환 특성)

  • RYU, HO-JUNG;LEE, DOYEON;NAM, HYUNGSEOK;JO, SUNG-HO;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.393-400
    • /
    • 2018
  • To confirm the operating range of two oxygen carriers for chemical looping combustion system, the effects of operating variables on solid circulation rate were measured and discussed using a two-interconnected circulating fluidized bed system at ambient temperature and pressure. Moreover, suitable operating ranges to avoid choking of the fast fluidized bed (air reactor) were confirmed for two oxygen carriers. A continuous long-term operation of steady-state solid circulation more than 24 hours was also demonstrated within the operating windows. Finally we could confirm that those two oxygen carriers are suitable for chemical looping combustion system with high solid circulation rate and smooth solid circulation.

Mathematical approach for optimization of magnetohydrodynamic circulation system

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.654-664
    • /
    • 2019
  • The geometrical and electromagnetic variables of a rectangular-type magnetohydrodynamic (MHD) circulation system are optimized to solve MHD equations for the active decay heat removal system of a prototype Gen-IV sodium fast reactor. Decay heat must be actively removed from the reactor coolant to prevent the reactor system from exceeding its temperature limit. A rectangular-type MHD circulation system is adopted to remove this heat via an active system that produces developed pressure through the Lorentz force of the circulating sodium. Thus, the rectangular-type MHD circulation system for a circulating loop is modeled with the following specifications: a developed pressure of 2 kPa and flow rate of $0.02m^3/s$ at a temperature of 499 K. The MHD equations, which consist of momentum and Maxwell's equations, are solved to find the minimum input current satisfying the nominal developed pressure and flow rate according to the change of variables including the magnetic flux density and geometrical variables. The optimization shows that the rectangular-type MHD circulation system requires a current of 3976 A and a magnetic flux density of 0.037 T under the conditions of the active decay heat removal system.

Experiments on a Regenerator with Thermosyphon for Absorption Heat Pumps (기포 펌프를 적용한 흡수식 열펌프용 고온 재생기의 작동 특성 실험)

  • Park, C.W.;Jurng, J.;Nam, P.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.463-472
    • /
    • 1996
  • Experiments were carried out to study the operation characteristics of a regenerator with a thermo-syphon pump and a surface-flame burner for a lithium bromide (LiBr)-water absorption heat pump. A cylindrical-shape metal-fiber burner and commercial grade propane were used. The emission of carbon monoxide and nitric oxide was measured by a combustion gas analyzer. Ther regeneration rate of water vapor as a refrigerant was measured. It could be as a reference value showing the performance of the regenerator. The circulation rate of the LiBr-water solution was also measured from both the tanks for the weak-and the strong-solution. Using a refractometer, the LiBr concetration in the solution was calculated from the measured refractory index of the solution. Temperature of the solution and the condensed water was recorded at several points in the experimental apparatus with thermocouples, using a personal computer. This data collecting system for measuring temperature was calibrated with a set of standard thermometers. The generating rate of water vapor as refrigerant increased linearly with heat supplied. It was about 4.0g/s with the heat supplied at a rate of 16,500kcal/h. The circulation rate of LiBr solution also increases with the heat supplied. The difference in LiBr concentrations between the weak and the strong solution was in the range of 1 to 5% when the concentration of the strong solution was about 60%. It was dependent upon both the heat supplied and the circulation rate of the solution. The initial concentration and the level of the LiBr solution in the regenerator were measured and recorded before experiments. The effect of them on the generating rate of water vapor and the circulation rate of the solution was also studied. The generating rate of water vapor was not strongly dependent upon both the level of the LiBr solution and the initial LiBr concentration. However, the concentration difference of the solution increases with the initial level of the LiBr solution.

  • PDF

Simulation of a natural circulation evaporative concentrator (자연순환형 소형 진공증발농축장치 시뮬레이션)

  • Park, Ji-Hoon;Kim, Nae-Hyun;Choi, Young-Min;Oh, Wang-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1283-1287
    • /
    • 2009
  • In this study, an analysis was performed on an evaporative steam generator (concentrator), where natural circulation convective boiling occurs on tube-side by condensing hot steam on shell-side. Existing correlations on two-phase pressure drop, boiling or condensation heat transfer were used for the analysis. The effect of number of tubes, tube length, etc. on thermal performance was investigated. Simulation results reveal that steam generation rate increases almost proportionally to the tube length, or number of tubes. It is also shown that water circulation rate decreases as tube length increases.

  • PDF

Improvement of Tidal Circulation in a Closed Bay using Variation of Bottom Roughness (해저조도 변화를 이용한 폐쇄성 만의 해수순환 개선)

  • BOO SUNG YOUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.1-7
    • /
    • 2005
  • Tidal circulation in a closed bay using a variation of bottom roughness was investigated through the numerical experiments based on a finite difference multi-level model. Various distributions of bottom roughness in the bay were implemented to determine their effects. It hadbeen determined that residual currents can be generated from the differences of the bottom roughness between streaming and reverse flow directions. The magnitude of residual currents and volume flow rate increase when the relative ratio of bottom roughness between streaming and reverse flow directions increase. Circulation in the closed bay is also improved by the employment of the change of bottom roughness.

Investigation of two-phase natural circulation with the SMART-ITL facility for an integral type reactor

  • Jeon, Byong Guk;Yun, Eunkoo;Bae, Hwang;Yang, Jin-Hwa;Ryu, Sung-Uk;Bang, Yun-Gon;Yi, Sung-Jae;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.826-833
    • /
    • 2022
  • A two-phase natural circulation test using SMART integral test loop (SMART-ITL) was conducted to explore thermo-hydraulic phenomena of two-phase natural circulation in the SMART reactor. Specifically, the test examined the natural circulation in the primary loop under a stepwise coolant inventory loss while keeping the core power constant at 5% of the scaled full power. Based on the test results, three flow regimes were observed: single-phase natural circulation (SPNC), two-phase natural circulation (TPNC), and boiler-condenser natural circulation (BCNC). The flow rate remained steady in the SPNC, slightly increased in the TPNC, and dropped abruptly and maintained in the BCNC. Using a natural circulation flow map, the natural circulation characteristic in the SMART-ITL was compared with those in pressurized water reactor simulators. In the SMART-ITL, a BCNC regime appeared instead of siphon condensation and reflux condensation regimes because of the use of once-through steam generators.

Development of water circulation status estimation model by using multiple linear regression analysis of urban characteristic factors (도시특성 요인의 다중선형회귀 분석을 이용한 물순환상태추정모델 개발)

  • Kim, Youngran;Hwang, Seonghwan;Lee, Yunsun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.503-512
    • /
    • 2020
  • Identifying the water circulation status is one of the indispensable processes for watershed management in an urban area. Recently, various water circulation models have been developed to simulate the water circulation, but it takes a lot of time and cost to make a water circulation model that could adapt the characteristics of the watershed. This paper aims to develop a water circulation state estimation model that could easily calculate the status of water circulation in an urban watershed by using multiple linear regression analysis. The study watershed is a watershed in Seoul that applied the impermeable area ratio in 1962 and 2000. And, It was divided into 73 watersheds in order to consider changes in water circulation status according to the urban characteristic factors. The input data of the SHER(Similar Hydrologic Element Response) model, a water circulation model, were used as data for the urban characteristic factors of each watershed. A total of seven factors were considered as urban characteristic factors. Those factors included annual precipitation, watershed area, average land-surface slope, impervious surface ratio, coefficient of saturated permeability, hydraulic gradient of groundwater surface, and length of contact line with downstream block. With significance probabilities (or p-values) of 0.05 and below, all five models showed significant results in estimating the water circulation status such as the surface runoff rate and the evapotranspiration rate. The model that was applied all seven urban characteristics factors, can calculate the most similar results such as the existing water circulation model. The water circulation estimation model developed in this study is not only useful to simply estimate the water circulation status of ungauged watersheds but can also provide data for parameter calibration and validation.

Clinical Experience of Open Heart Surgery under Extracorporeal Circulation -Review of Operation 131 Cases- (개심술에 의한 심질환의 외과적 치료 -131 례 수술경험-)

  • 유회성
    • Journal of Chest Surgery
    • /
    • v.13 no.4
    • /
    • pp.394-404
    • /
    • 1980
  • During the period of June 1976 October 1980 131 cases of Open heart Surgery was performed at the National Medical Center in Seoul under the extracorpocal circulation. 77 cases were congenital heart disease and 54 were acquired heart disease. The age of the patients ranged between 2$\frac{1}{2}$ and 51 years. For all patients partial hemodilution technique and moderte hypothermia was used during extracorporeal circulation and cardioplegia was done for myocardial protection since April 1978. 41 of congenital cases were non-cyanotic group and 1 case died. 36 of congenital cases were cyanotic group and revealed very high mortiality rate (16 death, 39%). 53 of acquired cases were cases of valvular heart disease, 34 mitral (3 death), 1 aortic, 4 mitral with aortic 12 mitral with tricuspid (3 death), 2 triple valves (2 death), and revealed mortality rate of 15.1% (8 death). 1 of acquired cases were left atrial myxoma. There were 25 cases of operative death and over all motality rate was 19.1%.

  • PDF