• Title/Summary/Keyword: Circularly Polarized

Search Result 165, Processing Time 0.042 seconds

A Study on Design and Fabrication of Circularly Polarized Antenna using Microstrip Patch (마이크로스트립형 원형편파 안테나 설계 및 제작에 관한 연구)

  • 이주현;김성명;정규은;안영수;김용대;하덕호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.181-186
    • /
    • 2001
  • In this research, we design a microstrip patch antenna with circularly polarized form. First, we study patch form of circularly polarized antenna caused by 90-degree phase difference, and simulate using Ensemble 5.0 to make the left-hand and right-hand circularly polarized antenna. We made circularly polarized antenna using microstrip substrate based on result of the simulation, and analyzed manufactured circularly polarized antenna using Network Analysis.

  • PDF

A Study of Broadband Propagation Characteristics for The Future Mobile Communications(I) - Broadband Propagation Characteristics Measurements on Indoor (차세대 이동통신에서의 광대역 전파특성 연구(I)-실내에서의 광대역 전파특성 측정-)

  • 하덕호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.265-277
    • /
    • 1998
  • In this paper, to investigate the possibility of fading reduction effect and high transmission rate in indoor multipath propagation environment, we measured and analyzed broadband signal conducting by frequency sweeping method in LOS(Line-of-Sight) environment. In measuring, we used vertically polarized, horizonatally polarized and circularly polarized and circularly polarized antenna to compare the fading reduction effect and the characteristic of bandwidth amplitude fluctuation between each broadband signals. As a result, it can be seen that the circularly polarized antenna can reduce the amplitude deviation of the broadband signal because it can remove the odd-times reflected wave in LOS environment. And also, It was found that the best effective diversity reception method is to use polarization branches, which install a circularly polarized antenna at the transmitting end and compose the vertical and horizontal antenna at the receiving end.

  • PDF

Circularly Rotated Array for Dual Polarized Applicator in Superficial Hyperthermia System

  • Kim, Ki Joon;Choi, Woo Cheol;Yoon, Young Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.20-25
    • /
    • 2015
  • A circularly rotated array for a dual polarized applicator in a superficial hyperthermia system is proposed. The applicator has a wider effective treatment area due to the $180^{\circ}$ phase shift. The dual polarized circularly rotated array (DPCRA) suppresses overheating at the center of the array and helps evenly distribute the heat. This array provides a more effective treatment area than a lattice array when a $2{\times}2$ dual polarized array is fitted to the treatment area. The treatment area is 71.5% of the aperture, whereas the effective treatment areas of the $2{\times}2$ dual polarized lattice array (DPLA) and the single polarized array (SPA) are 57.2% and 38.6% of the same aperture, respectively. The measurement matches the simulation results without blood circulation effects. In a $2{\times}2$ array applicator, the proposed DPCRA has more heat uniformity than the DLA and the SPA.

A Study on Electrodeless HID Lamp Systems Using Circularly Polarized Microwaves (원편파를 이용한 무전극 고압 방전 램프 시스템에 관한 연구)

  • Kim, Kyoung-Shin;Kim, Jin-Joong;Lee, Seung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.214-220
    • /
    • 2010
  • This paper presents the results of a study on an electrodeless high intensity discharge (HID) lamp system that is powered by circularly polarized microwaves (CPMs). The technique to generate CPMs enables an electrodeless high intensity discharge lamp to be turned on without the retation of the bulb but conventional electrodeless high intensity discharge lamps use rotating bulbs in order to prevent a puncture in a hot spots that are formed by the linearly polarized microwaves in the circular cavity. The technique to generate CPMs is described and the salient features of the lamp characteristics are presented.

Design Method of a Circularly-Polarized Antenna Using Fabry-Perot Cavity Structure

  • Ju, Jeong-Ho;Kim, Dong-Ho;Lee, Wang-Joo;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.163-168
    • /
    • 2011
  • A Fabry-Perot cavity (FPC) antenna producing both high-gain and circularly-polarized (CP) behavior is proposed. To increase antenna gain and obtain CP characteristics, a superstrate composed of square patches with a pair of truncated corners is placed above the linearly polarized patch antenna with an approximately half-wavelength distance from the ground plane at the operating frequency. The proposed antenna has the advantages of high gain, a simple design, and an excellent boresight axial ratio over the operating frequency bandwidth. Moreover, used in an FPC antenna, the proposed superstrate converts a linear polarization produced by a patch antenna into a circular polarization. In addition, the cavity antenna produces left-hand circular-polarization and right-hand circular-polarization when a patch antenna inside the cavity generates x-direction and y-direction polarization, respectively. The measured and simulated results verify the performance of the antenna.

Tight Focusing Characteristics of Circularly Polarized Bessel-Gauss Beams with Fractional-order Vortex Modulation

  • Lingyu Wang;Yu Miao;Mingzhu Xu;Xiumin Gao
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • Radially polarized beams with the ability to generate a sub-wavelength sized spot in a longitudinal field provides significant applications in microscopic imaging, optical tweezers, lithography and so on. However, this excellent property can also be achieved based on conventional circularly polarized beams. Here, we demonstrate its ability to create a strong longitudinal field by comparing the tight focusing characteristics of fractional-order vortex modulated radial polarized and left-handed circular polarized Bessel-Gauss beams. Additionally, the possibility of generating arbitrary fractional-order vortex modulated Bessel-Gauss beams with a strong longitudinal field is demonstrated. A special modulation method of left-handed circularly polarized Bessel-Gauss beams modulated by a fractional-order vortex is adopted creatively and a series of regulation laws are obtained. Specifically, the fractional-order phase modulation parameter n can accurately control the number of optical lobes. The ratio of the pupil radius to the incident beam waist β1 can control the radius of the optical lobes. The first-order Bessel function amplitude modulation parameter β2 can control the number of layers of optical lobes. This work not only adds a new modulation method for optical micromanipulation and optical communication, but also enriches the research on fractional vortex beams which has very important academic significance.

Bandwidth Enhancement of Circularly Polarized Dielectric Resonator Antenna

  • Sun, Ru-Ying
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.26-31
    • /
    • 2015
  • Axial-ratio (AR) bandwidth enhancement is achieved for a circularly polarized (CP) cylindrical dielectric resonator antenna (DRA) using a wideband hybrid coupler (WHC) combined with dual probe feed. The presented WHC, comprised of a Wilkinson power divider and a wideband $90^{\circ}$ shifter, delivers good characteristics in terms of 3 dB power splitting and consistent $90^{\circ}$ (${\pm}5^{\circ}$) phase shifting over a wide bandwidth. In turn, the proposed CP DRA, for the employment of the WHC, in place of conventional designs, provides a significant enhancement on AR bandwidth and impedance matching. The antenna prototype with the WHC exhibits a 3 dB AR bandwidth of 48.66%, an impedance bandwidth of 52.5% for voltage standing wave ratio (VSWR) ${\leq}2$, and a bandwidth of 44.66% for a gain of no less than 3 dBi. Experiments demonstrate that the proposed WHC is suitable for broadband CP DRA design.

Design of a dual band circularly polarized antenna for 900 MHz / 2.45 GHz Hand-held RFID Reader (900 MHz / 2.45 GHz 대역 휴대용 FRID 리더를 위한 이중 대역 원형편파 안테나 설계)

  • Kim, Jeong-Pyo;Lee, Yoon-Bok;Seong, Won-Mo;Choi, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.235-240
    • /
    • 2005
  • This paper presents a dual band circularly polarized microstrip patch antenna. The antenna consists of two corner truncated patches implemented in one plane and single feed point. The input signal is directly excited to the patch 2 and the patch 1 is fed from patch 2 by coupling between two patches. The antenna is operated at 900 MHz and 2.45 GHz bands and has the right hand circularly polarized radiation pattern at all. The measured gains of the antenna are 2.95 dBic at 900 MHz band and 4.6 dBic at 2.45 GHz band.

  • PDF

Development of Doppler Radar Using Compact Dual-Circularly Polarized Antenna (소형 이중 원형편파 안테나를 이용한 도플러 레이다 개발)

  • Kim, Tae-Hong;Lee, Hyeonjin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.121-124
    • /
    • 2015
  • In this paper, we developed the compact Doppler radar using the compact dual-circularly polarized antenna for medical application. The operating frequency is 2.47 GHz for considering ISM band. In order to decrease the size of the entire system, we designed the compact antenna and located the circuit board at the back of the antenna. The simulation of the proposed antenna was performed by the finite difference time domain (FDTD) method. The total volume of the proposed system is $65{\times}45{\times}6mm^3$ including the antenna. From the experiment, the developed bio-radar could be used to support the device for medical applications.

A Side-Fed Circularly-Polarized Patch Antenna with a Dielectric Loading

  • Jeong, Ji-Young;Choi, Seung-Mo;Enkhbayar, Bayanmunkh;Sodnomtseren, Ononchimeg;Ahn, Bierng-Chearl
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • In this paper, we present the design and measurement of a side-fed circularly-polarized patch antenna with a dielectric loading. The antenna consists of a comer-truncated rectangular patch, an L-shaped ground plane, a dielectric loading material, and a coaxial probe. An antenna operating at the UHF band (910 MHz) for the RFID reader applications is optimized using a commercial software. The size of the patch is reduced by a factor of 1.73 by loading the patch with mono-cast(MC) nylon. Measurements of the fabricated antenna show performance characteristics comparable to those of much larger commercial RFID reader antennas.