• Title/Summary/Keyword: Circular-Couette Flow

Search Result 3, Processing Time 0.016 seconds

THE EFFECT OF RADIAL TEMPERATURE GRADIENT ON THE CIRCULAR-COUETTE FLOW (반경방향으로의 온도구배가 Circular-Couette 유동에 미치는 영향)

  • Kang, Chang-Woo;Yang, Kyung-Soo;Mutabazi, Innocent
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.16-24
    • /
    • 2009
  • Numerical simulation has been carried out to investigate the influence of radial temperature gradient on the Circular-Couette flow. Varying the Grashof number, we study the detailed flow and temperature fields. The current numerical results show good agreement with the analytical and experimental results currently available. It turns out that spiral vortices are generated by increasing temperature gradient. We classify the flow patterns for various Grashof number based on the characteristics of flow fields and spiral vortices. The correlation between Richardson number with wave number shows that the spiral angle and size of spiral vortices increase with increasing Richardson number.

A flow phenomenon of aquaous polymer solution in couette flow of concentric cylinder with wide circular (넓은 환상간극을 가진 동심원통속의 couette 흐름에서 고분자수용액의 유동현상)

  • 권혁칠;이성노;정진도
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.81-88
    • /
    • 1993
  • This report describes the experimental research on the flow phenomena of the aq uaous polymer solution within the Cuette flow of the concentric, cylinders type with a wide circular gap. We have investigated the phenomena of the fluid flow through torque measuring in the system that the inner cylinder is stationary and the outer one is rotating. Geometrical parameters of the system are the gap ratio of t/R$_{0}$=0.2 and Aspect ratio of l/t=100. The torque increases considerably in about 420-480RPM, So, it is considered a turbulent transition boundary, the higher plymer concentration is, the lower torque value is and the higher transition Reynolds number is. In each of the polymer concentration, the unstable boundary of torque, that is, idiosyncrasies of torque is observed around 220-280RPM. and the boundary is looked upon as a resonant vibration which is caused by the inner cylinder and tortional vibration of torque sensor.r.

  • PDF

Three-dimensional Fluid Flow Analysis in Taylor Reactor Using Computational Fluid Dynamics (CFD를 이용한 테일러 반응기의 3차원 유동해석)

  • Kwon, Seong Ye;Lee, Seung-Ho;Jeon, Dong Hyup
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.448-453
    • /
    • 2017
  • We conducted the three-dimensional fluid flow analysis in a Taylor reactor using computational fluid dynamics (CFD). The Taylor flow can be categorized into five regions according to Reynolds number, i.e., circular Couette flow (CCF), Taylor vortex flow (TVF), wavy vortex flow (WVF), modulated wavy vortex flow (MWVF), and turbulent Taylor vortex flow (TTVF), and we investigated the flow characteristics at each region. For each region, the shape, number and length of vortices were different and they influenced on the bypass flow. As a result, the Taylor vortex was found at TVF, WVF, MWVF and TTVF regions. The highest number of Taylor vortex was observed at TVF region, while the lowest at TTVF region. The numerical model was validated by comparing with the experimental data and the simulation results were in good agreement with the experimental data.