• 제목/요약/키워드: Circular trench

검색결과 6건 처리시간 0.019초

CT-IGBT의 최적 설계 및 전기적 특성에 관한 분석 (An Analysis on Optimal Design and Electrical Characteristics of CT-IGBT(Circular Trench IGBT))

  • 곽상현;서준호;서인곤;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.22-23
    • /
    • 2008
  • The conventional IGBT has two problems to make the device taking high performance. The one is high on state voltage drop associated with JFET region, the other is low breakdown voltage associated with concentrating the electric field on the junction of between p base and n drift. This paper is about the structure to effectively improve both the lower on state voltage drop and the higher breakdown voltage than the conventional IGBT. For the fabrication of the circular trench IGBT with the circular trench layer, it is necessary to perform the only one wet oxidation step for the circular trench layer. Analysis on both the on state voltage drop and the Breakdown voltage show the improved values compared to the conventional IGBT structure. Because the circular trench layer disperses electric field from p base and n drift junction to circular trench, the breakdown voltage increase. The on state voltage drop decrease due to reduction of JFET region and direction change of current path which pass through reversed layer channel.

  • PDF

습식 산화를 이용한 원형 트렌치 게이트 IGBT에 관한 연구 (An Analysis of IGBT(Insulator Gate Bipolar Transistor) Structure with an Additional Circular Trench Gate using Wet Oxidation)

  • 곽상현;경신수;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제21권11호
    • /
    • pp.981-986
    • /
    • 2008
  • The conventional IGBT has two problems to make the device taking high performance. The one is high on state voltage drop associated with JFET region, the other is low breakdown voltage associated with concentrating the electric field on the junction of between p base and n drift. This paper is about the structure to effectively improve both the lower on state voltage drop and the higher breakdown voltage than the conventional IGBT. For the fabrication of the circular trench IGBT with the circular trench layer, it is necessary to perform the only one wet oxidation step for the circular trench layer. Analysis on both the on state voltage drop and the breakdown voltage show the improved values compared to the conventional IGBT structure. Because the circular trench layer disperses electric field from the junction of between p base and n drift to circular trench, the breakdown voltage increase. The on state voltage drop decrease due to reduction of JFET region and direction changed of current path which pass through reversed layer channel. The electrical characteristics were studied by MEDICI simulation results.

Numerical and Experimental Studies of Dual Subsea Pipelines in Trench

  • Jo, Chul H.;Shin, Young S.;Min, Kyoung H.
    • Journal of Ship and Ocean Technology
    • /
    • 제6권2호
    • /
    • pp.12-22
    • /
    • 2002
  • Offshore pipelines play an important role in the transportation of gas, oil, water and oil products. It is common to have a group of pipelines in the oil and gas field. To reduce the installation cost and time, dual pipelines are designed. There are great advantages in the installation of dual pipelines over two separate single lines. It can greatly reduce the cost for trench, back-filling and installation. However the installation of dual pipelines often requires technical challenges. Pipelines should be placed to be stable against external loadings during installation and design life period. Dual pipelines in trench can reduce the influence of external forces. To investigate the flow patterns and forces as trench depth and slope changes, number of experiments are conducted with PIV(Particle Image Velocimetry) equipment in a Circulating Water Channel. Numerical approaches to simulate experimental conditions are also made to compare with experimental results. The velocity fields around dual pipelines in trench are investigated and analysed. Comparison of both results show similar patterns of flow around pipelines. It is proved that the trench depth contributes significantly on hydrodynamic stability. The trench slope also affects the pipeline stability. The results can be applied in the stability design of dual pipelines in trench section. The complex flow patterns can be effectively linked in the understanding of fluid motions around multi-circular bodies in trench.

트렌치내에서 복합 해저 관로 안정성의 수치해석과 실험해석 비교 (Comparison of Numerical and Experimental Stability of Dual Subsea Pipeline in Trench)

  • Chul H. Jo;Young S. Shin;Sung G. Hong;Kyoung H. Min;Chung, Kwang-Sic
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.254-259
    • /
    • 2001
  • There are advantages in the installation of dual subsea pipelines over two separate single lines. In many case it can reduce the cost for trench, back-filling and installation. However the installation of dual pipelines often requires technical challenges. Dual Pipelines should be placed to be stable to external loading not only during the installation but also in the design life. Dual pipelines in trench can reduce the influence of external forces. To investigate applied forces as slope changes, number of experiments are conducted with PIV (Particle Image Velocimetry) in a circulating water channel. Numerical approaches are also made to compare with experimental results. The velocity fields around dual pipelines in trench are investigated and analysed. Comparison of both results show similar pattern of flow around dual pipelines. it is proved that the trench slope affects the pipeline stability significantly. The results can be applied in the stability design of dual pipelines in trench section. The complex flow patterns can be referenced effectively linked in the understanding of fluid around circular bodies in trench.

  • PDF

침투트렌치 적용방안에 관한 실험적 연구 (An Experimental Study on the Application Method of Infiltration Trench)

  • 정도준;안승섭;김윤태
    • 한국방재학회 논문집
    • /
    • 제10권6호
    • /
    • pp.147-154
    • /
    • 2010
  • 본 연구에서는 침투형 우수유출저감시설 중 침투트렌치에 대한 치수효과를 25 cm 관경을 가진 트렌치를 사용하여 수위별(5, 10, 15, 20, 25 cm) 유입유량을 적용하여 실험하였고 침투량, 유출량, 유출 시작시간, 종기침투능 및 종기침투능에 도달하는 시간 등을 계측하여 실험을 통한 침투트렌치의 적용방안을 도출하고자 하였다. 침투트렌치의 규모는 배수구역을 $130m^2$($6.5\;m{\times}20\;m$)로 가정하여 유역면적에 대한 CN값으로 산정하였으며 AMC-I 조건에서 5개의 침투트렌치 수위에 대한 CN은 트렌치경사 2%일 때 84, 경사 5%일 때 83으로 산정되었고, AMC-III 조건에서 CN은 트렌치 경사 2%, 5% 모두 84로 산정되었다.

Effect of Suction Nozzle Modification on the Performance and Aero-acoustic Noise of a Vacuum Cleaner

  • Park, Cheol-Woo;Lee, Sang-Ik;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1648-1660
    • /
    • 2004
  • The suction nozzle of a vacuum cleaner was modified to enhance the power performance and to reduce the airflow-induced acoustic noise. The suction power efficiencies of the vacuum cleaner were measured for various nozzles; (1) original nozzle, (2) original nozzle with modified trench height, (3) original nozzle with modified connecting chamber, and (4) a combination of (2) and (3). In addition, the suction pressure and sound pressure level around the suction nozzle were measured to validate the reduction of acoustic noise. The power efficiency and mean suction pressure increased when the trench height of the suction nozzle was increased. This was attributed to the suppression of the flow separation in the suction channel. Modification of the connecting chamber in the original nozzle, which had an abrupt contraction from a rectangular chamber into a circular pipe, into a smooth converging contraction substantially improved the suction flow into the connecting pipe. When both modifications were applied simultaneously, the resulting suction nozzle was more effective from the viewpoints of aerodynamic power increase and sound pressure level reduction.