• Title/Summary/Keyword: Circular motion accuracy

Search Result 57, Processing Time 0.027 seconds

Measuring of Circular Motion Accuracy of NC Lathe using Linear Scales (리니어스케일을 이용한 NC 선반의 원 운동정도 측정)

  • 김영석;김재열;한지희;정정표;윤원주;송인석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1144-1149
    • /
    • 2003
  • It is very important to measure circular motion accuracy of NC lathes it affects accuracy, performance, interchange ability and quality of machine parts machined by the NC lathes in industries. So, in this study, measuring units system to measure circular motion accuracy two axes circular motion accuracy of NC lathes was composed of two optical linear scales installed on the z and x-axes of work coordinate system on NC lathe and a computer inserted with PC counter card enables to obtain measuring data. Here, ATC(Automatic Tool Changer) and moving part of linear scales are fixed with magnet bases in order to measure circular motion accuracy of the ATC of NC lathe. And next, computer software was developed in order to measure the circular motion accuracy of NC lathe under resolution of 0.1 $\mu\textrm{m}$ using two linear scales, and also computer softwares were developed so that measuring data could be modeled on plots and be analyzed numerically,

  • PDF

Developement of Measuring System of Circular Motion Accuracy in Machining Center (머시닝 센터에서 원운동정도 측정시스템의 개발)

  • 김영석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.58-66
    • /
    • 1995
  • It is very important to test motion accuracy and performance of NC machine tools as they affect that of all other machines machined by them in industry. In this paper, in has become possible to detect errors of linear displacement of radial direction for circular motion test using newly assembled magnetic type of linear scales so called Magnescale ball bar system, and to calculate time interval getting error motion data and revolution angle of circular motion in machining center using tick pulses come out from computer. And a set of error data gotten from test is expressed to a plot by computer treatment and to numerics of error motion by statistical treatment and results of test are compared with those of Renishaw ball bar system.

  • PDF

Developement of Measuring Units of circular Motion Accuracy on NC Lathe (NC선반의 원 운동정도 측정장치의 개발)

  • 김영석;김재열
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.1-7
    • /
    • 2001
  • It is very important to test circular motion accuracy of NC machine tools as it affects all other machines machined by them in industries. In this paper, it has become possible to detect errors of linear displacement of radial directions for circle tar motion accuracy test using newly assembled magnetic type of linear scale so called Magnescale ball-bar system. It has also organized computer program systems using tick pulses come out from computer for getting error motion data at colt start time interval in circular motion test on NC lathe. Error data gotten from test is expressed to plots and analysed to numerics by various statistical treatments.

  • PDF

Developement of Measuring Units of Space Motion Accuracy in Machining Center (Machining Center의 공간정도 측정장치의 개발)

  • Kim, Young Seuk;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.37-47
    • /
    • 1995
  • In recent years, it has been variously developed for testing the accuracy of circular motion of NC machine tools, for example Telescoping Ball Bar Method by Bryan, Circular test Method by Knapp and $r^{-{\theta} }$ Method by Tsutsumi etc., but these methods are all 2-dimentional measuring methods on plane. These simple methods of circular motion accuracy test of NC machine tools have been studied by many reserchers as above, but it is not yet settled in the code of measuring methods of motion errors of NC machine tools, because of errors of measuring units and sensors, and also especially the difficulties of centering of measuring units and the spindle of machining center. In this paper, in use of 2 rotary encoders and 1 magnetic type linear scale with resolution of 0.5 .mu. m, it has become possible for measuring of 3 dimentional space motion accuracy.

  • PDF

Organization of Circular Motion Accuracy Measuring System of NC Lathe using Linear Scales (리니어 스케일을 이용한 NC 선반의 원 운동정도 측정 시스템의 구성)

  • Kim Young Seuk;Kim Jae Yeol;Kim Jong Kwan;Han Ji Hee;Jung Jung Pyo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.1-6
    • /
    • 2004
  • Measurements of circular motion accuracy of NC lathe have achieved with ball bar systems proposed by Bryan, but the ball bar systems have ifluenced on the measuring data by way of the accuracy of the balls and the contacts of balls and bar seats. Therefore in this study, error data during of circular motion of ATC(Automatic Tool Changer) of NC lathe will be acquired by reading zx plane coordinates using two optical linear scales. Two optical linear scales of measuring unit are fixed on z-x plane of NC lathe, and the moving part is fixed to ATC and then is made to receive data of coordinates of the ATC at constant time intervals using tick pulses comming out from computer. And then, error data files of radial direction of circular motion are calculated with the data read, and the aspect of circular motion are modeled to plots, and are analysed by means of statistical treatments of circularity, means, standard deviations etc.

Measurement of motion accuracy by two-dimensional probe on NC machine tools -1st report, Measurement of the circular motion accuracy- (2차원 프로브에 의한 NC공작기계의 운동정밀도 측정 -제 1보 원호보간운동 정밀도 측정-)

  • JEON, Eon-Chan;OYAMADA, Shigenori;TSUTSUMI, Masaomi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 1996
  • This paper presented a new measuring system to improve circular motion accuracy by using two-dimensonal probe and master ring for NC machine tools. This measuring system reduced the circular motion error conspicuously by eliminating the influence of the acceleration/deceleration range and compensating the friction force whose influences were significant while measuring the motion. Experimental results show that this system had enough accuracy to measure a circular motion for NC machine tools, compared with the circular test method and the r .theta. method.

  • PDF

Organizartion of Measurin System of Circular Motion Accuracy of Machining Center (머시닝센터의 원운동정도 측정시스템의 구성)

  • 김영석;낭궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.305-311
    • /
    • 1993
  • In recent years, it has been variously developed for testing the accuracy of circular motion of NC machine tools, for example Telescoping Ball Bar Method by Bryan,Circular Test Method by Knapp and r $_{- \theta}$ Mathod by Tsutsumi etc., but it is not yet settled in the code of measuring methods of motion errors of NC machine tools, because of errors of measuring units and sensors, and also especially the difficulties of centering of measuring units. In this paper, in use of magnetic type linear scale with resolution of 0.5 .mu. m and tick pulses come out from computer, it has become possible for detecting of linear displacement of radial errors and measuring of revolution angle of circular motion of NC machine tools.

  • PDF

A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool (복합공작기계의 이송계 운동정밀도 측정의 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.112-118
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool (복합공작기계의 이송계 운동정밀도 측정의 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.31-37
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

Identification of motion error sources in NC machine tools by a circular interpolation test (원호보간시험에 의한 수치제어 공작기계의 운동오차원인 진단에 관한 연구)

  • Hong, Seong-Wook;Shin, Young-Jae;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.126-137
    • /
    • 1993
  • This paper presents an efficient method for the identification of motion error sources in NC machine tools by making use of the circular interpolation test, which is often used in estimating the motion accuracy of NC machine tools. Mathematical formulae are described for motion errors due to various kinds of error sources. Two identification formulae are proposed: one is based on the frequency analysis and the other is formulated with the weithted residual method. Motion error signal is classified into two patterns, mean errors(mean of CW and CCW test signals from mean errors). The sources of the mean errors are identified by using the frequency analysis technique and the sources of the deviation errors by the weighted residual formulaltion. A menu driven, user oriented, computer program is written to realize the full steps of the proposed identificationprocedure. Then, the identification method is applied to two NC machine tools.

  • PDF