• 제목/요약/키워드: Circular failure

검색결과 347건 처리시간 0.026초

마그네슘 합금 판재의 온간성형 해석에서 FLD를 이용한 성형성 평가 (Formability Test in Warm Forming Simulation of Magnesium Alloy Sheet Using FLD)

  • 이명한;김흥규;김헌영;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.556-559
    • /
    • 2008
  • In this study, the failure in circular cup deep drawing simulation at warm temperature is predicted using forming limit diagram (FLD). The FLD is used in sheet metal forming analysis to determine the criterion for fracture prediction. The simulation with heat transfer of circular cup deep drawing at warm temperature was conducted. To predict the failure, the simulation with heat transfer used FLD at temperature in the vicinity of maximum thinning. The result of the simulation with heat transfer shows that the drawn depth increases with increasing temperature and is in accord with the experimental results above $150^{\circ}C$. The FLD provides a good guide for the failure prediction of warm forming simulation with heat transfer.

  • PDF

기존 교각의 FRP 원통관을 이용한 내진보강의 실험연구 (The Experimental Study on the Seismic Strengthening Effect of FRP Circular Tube on the Circular Bridge Piers)

  • 황윤국;윤순종;김정호;최영민;박경훈;권태규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.973-978
    • /
    • 2003
  • This paper describes the experimental study on seismic strengthening effect of circular bridge columns with poor lap-splice details using FRP(Fiber Reinforced Plastic) wrapping, The as-built column suffered brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or any ductility, The strengthening columns using FRP wrapping showed significant improvement in seismic performance due to FRP's confinement effect.

  • PDF

Undrained strength-deformation characteristics of Bangkok Clay under general stress condition

  • Yimsiri, Siam;Ratananikom, Wanwarang;Fukuda, Fumihiko;Likitlersuang, Suched
    • Geomechanics and Engineering
    • /
    • 제5권5호
    • /
    • pp.419-445
    • /
    • 2013
  • This paper presents an experimental study on the influence of principal stress direction and magnitude of intermediate principal stress on the undrained stress-strain-strength behaviors of Bangkok Clay. The results of torsional shear hollow cylinder and advanced triaxial tests with various principal stress directions and magnitudes of intermediate principal stress on undisturbed Bangkok Clay specimens are presented. The analysis of testing results include: (i) stress-strain and pore pressure behaviors, (ii) stiffness characteristics, and (iii) strength characteristics. The results assert clear evidences of anisotropic characteristics of Bangkok Clay at pre-failure and failure conditions. The magnitude of intermediate principal stress for plane-strain condition is also investigated. Both failure surface and plastic potential in deviatoric plane of Bangkok Clay are demonstrated to be isotropic and of circular shape which implies an associated flow rule. It is also observed that the shape of failure surface in deviatoric plane changes its size, while retaining its circular shape, with the change in direction of major principal stress. Concerning the behavior of Bangkok Clay found from this study, the discussions on the effects of employed constitutive modeling approach on the resulting numerical analysis are made.

Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Hedayat, Ahmadreza;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.445-452
    • /
    • 2018
  • In this paper the effects of particle size and model scale of concrete have been investigated on point load index, tensile strength, and the failure processes using a PFC2D numerical modeling study. Circular and semi-circular specimens of concrete were numerically modeled using the same particle size, 0.27 mm, but with different model diameters of 75 mm, 54 mm, 25 mm, and 12.5 mm. In addition, circular and semi-circular models with the diameter of 27 mm and particle sizes of 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, and 1.27 mm were simulated to determine whether they can match the experimental observations from point load and Brazilian tests. The numerical modeling results show that the failure patterns are influenced by the model scale and particle size, as expected. Both Is(50) and Brazilian tensile strength values increased as the model diameter and particle sizes increased. The ratio of Brazilian tensile strength to Is(50) showed a reduction as the particle size increased but did not change with the increase in the model scale.

A new analytical-numerical solution to analyze a circular tunnel using 3D Hoek-Brown failure criterion

  • Ranjbarnia, Masoud;Rahimpour, Nima;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.11-23
    • /
    • 2020
  • In this study, a new analytical-numerical procedure is developed to give the stresses and strains around a circular tunnel in rock masses exhibiting different stress-strain behavior. The calculation starts from the tunnel wall and continues toward the unknown elastic-plastic boundary by a finite difference method in the annular discretized plastic zone. From the known stresses in the tunnel boundary, the strains are calculated using the elastic-plastic stiffness matrix in which three dimensional Hoek-Brown failure criterion (Jiang and Zhao 2015) and Mohr-Coulomb potential function with proper dilation angle (i.e., non-associated flow rule) are employed in terms of stress invariants. The illustrative examples give ground response curve and show correctness of the proposed approach. Finally, from the results of a great number of analyses, a simple relationship is presented to find out the closure of circular tunnel in terms of rock mass strength and tunnel depth. It can be valuable for the preliminary decision of tunnel support and for prediction of tunnel problems.

Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP

  • Ou, Jialing;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.189-200
    • /
    • 2021
  • The compressive strength of circular concrete filled steel tubular (C-CFST) stubs strengthened with carbon fiber reinforced polymer (CFRP) is studied theoretically. According to previous experimental results, the failure process and mechanism of circular CFRP-concrete filled steel tubular (C-CFRP-CFST) stubs is analyzed, and the loading process is divided into 3 stages, i.e., elastic stage, elasto-plastic stage and failure stage. Based on continuum mechanics, the theoretical model of C-CFRP-CFST stubs under axial compression is established based on the assumptions that steel tube and concrete are both in three-dimensional stress state and CFRP is in uniaxial tensile stress state. Equations for calculating the yield strength and the ultimate strength of C-CFRP-CFST stubs are deduced. Theoretical predictions from the presented equations are compared with existing experimental results. There are a total of 49 tested specimens, including 15 ones for comparison of yield strength and 44 ones for comparison of ultimate strength. It is found that the predicted results of most specimens are within an error limit of 10%. Finally, simplified equations for calculating both yield strength and ultimate strength of C-CFRP-CFST stubs are proposed.

Utilizing CFRP and steel plates for repair of damaged RC beams with circular web openings

  • Fayyadh, Moatasem M.;Abed, Mohammed J.
    • Structural Engineering and Mechanics
    • /
    • 제84권1호
    • /
    • pp.49-61
    • /
    • 2022
  • This paper presents an experimental investigation into the effectiveness of using carbon fibre reinforced polymer (CFRP) and steel plates to repair damaged reinforced concrete (RC) beams with circular web openings at shear zones. It highlights the effectiveness of externally bonded CFRP and steel plates in repairing damaged RC beams by analysing the repaired beams'load capacity, deflection, strain, and failure mode. For the experiment, a total of five beams were used, with one solid beam as a control beam and the other four beams having an opening near the shear zone. Two beams with openings were repaired using inclined and vertical configuration CFRP plates, and the other two were repaired using inclined and vertical configuration steel plates. The results confirm the effectiveness of CFRP and steel plates for repairing damaged RC beams with circular openings. The CFRP and steel plates significantly increase ultimate capacity and reduce deflection under the openings. The inclined configuration of both CFRP and steel plates was more effective than the vertical configuration. Using an inclined configuration not only increases the ultimate capacity of the beams but also changes the mode of failure from shear to flexural.

현장 및 실내실험을 이용한 매립지 전단활동면 추정에 대한 연구 (Estimation of Shear Plane at Failed Landfill Using Field and Laboratory Tests)

  • 최호성;김태형;김성욱
    • 지질공학
    • /
    • 제29권3호
    • /
    • pp.315-327
    • /
    • 2019
  • 매립지 비탈면의 전단파괴 해석은 일반적으로 역해석 통한 파괴원호활동면을 추정하고 안전율을 산정한다. 그러나 현장 상황과 해석을 통해 산정된 원호파괴면 사이에는 서로 상이한 경우가 존재한다. 그래서 연구에서는 매립장에서 발생된 파괴면을 정확히 판정할 수 있는 근거가 될 수 있는 지반내 전단활동 파괴면의 위치를 파악하기 위하여 연구를 실시하였다. 이를 위해 콘관입시험, 시추조사, 연 X-선 영상 분석, 밀도검층, 초음파주사검층 등의 현장 및 실내실험을 실시하였다. 조사 결과 콘관입시험 결과로 부터 관입저항치, 간극수압, 비배수전단강도가 주변 구간에 비해 현저히 감소하는 특정 구간을 확인할 수 있었고 지반내의 전단파괴면으로 예측된다. 추가 확인을 위해 실시된 연 X-선 영상 판독 결과 예상 활동 지반층에서 층리가 교란된(경사진) 것으로 나타났다. 밀도검층과 초음파주사검층 결과에서도 유사하게 파괴면 위치에서 다른 위치와는 다른 경향을 보이는 구간을 확인하였다. 본 연구에서 사용된 방법으로 지반내 파괴면 추정이 가능함을 알 수 있었다.

강우에 의한 암반사면 파괴 해석 사례 연구를 통한 해석방법 적용성 검토 (Review of Applicability of Analysis Method based on Case Study on Rainfall-Induced Rock Slope Failure)

  • 정자혜;김우석
    • 지질공학
    • /
    • 제27권3호
    • /
    • pp.267-274
    • /
    • 2017
  • 암반은 암석재료 자체의 역학적 성질과 암반내에 분포하는 불연속면의 기하학적 특징에 의해 그 역학적 특성이 좌우된다. 암반사면의 경우에는 불연속면에 의해 특히 파괴면의 위치와 파괴후의 거동 등이 달라진다. 본 논문에서는 불연속면의 규모에 따라 암반사면의 파괴형태가 달라지는 점을 고려하여, 원호파괴와 평면파괴 안정해석을 위한 2개의 3D 해석방법을 개발하고 실제 사면에 적용하여 그 적용성을 검토하였다. 결과, 원호파괴의 경우, 자연건조상태에서는 안정하지만 강우에 의해 표층 함수비가 증가하면 불안정해지는 해석 결과를 얻었다. 평면파괴의 경우도 강우에 의해 불연속면 자체의 마찰각이 감소하는 영향에 의해 건조상태보다 불안정해지는 결과가 나타났다. 이상의 해석 결과로부터 실제 사면에서의 현상을 잘 반영하는 것으로 보아, 개발된 해석방법이 사면안정성 검토 또는 유지관리의 목적으로 적용가능하다고 판단된다.

Theoretical solutions for displacement and stress of a circular opening reinforced by grouted rock bolt

  • Zou, Jin-Feng;Xia, Zhang-Qi;Dan, Han-Cheng
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.439-455
    • /
    • 2016
  • This paper presented solutions of displacement and stress for a circular opening which is reinforced with grouted rock bolt. It satisfies the Mohr-Coulomb (M-C) or generalized Hoek-Brown (H-B) failure criterion, and exhibits elastic-brittle-plastic or strain-softening behavior. The numerical stepwise produce for strain-softening rock mass reinforced with grouted rock bolt was developed with non-associative flow rules and two segments piecewise linear functions related to a principle strain-dependent plastic parameter, to model the transition from peak to residual strength. Three models of the interaction mechanism between grouted rock bolt and surrounding rock proposed by Fahimifar and Soroush (2005) were adopted. Based on the axial symmetrical plane strain assumption, the theoretical solution of the displacement and stress were proposed for a circular tunnel excavated in elastic-brittle-plastic and strain-softening rock mass compatible with M-C or generalized H-B failure criterion, which is reinforced with grouted rock bolt. It showed that Fahimifar and Soroush's (2005) solution is a special case of the proposed solution for n = 0.5. Further, the proposed method is validated through example comparison calculated by MATLAB programming. Meanwhile, some particular examples for M-C or generalized H-B failure criterion have been conducted, and parametric studies were carried out to highlight the influence of different parameters (e.g., the very good, average and very poor rock mass). The results showed that, stress field in plastic region of surrounding rock with considering the supporting effectiveness of the grouted rock bolt is more than that without considering the effectiveness of the grouted rock bolt, and the convergence and plastic radius are reduced.